Fault-tolerant control of spacecraft attitude regulation: a concise adaptive dual-mode scheme

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yu Lu ◽  
Pengpeng Ye ◽  
Ming-Zhe Dai ◽  
Jin Wu ◽  
Chengxi Zhang

Purpose This paper aims to address the spacecraft attitude regulation problem in the presence of extrinsic disturbances and actuator faults. Design/methodology/approach Based on adaptive backstepping design technique, a new concise adaptive dual-mode control scheme is proposed, which can either use the fault information detected by fault diagnosis mechanisms or switch to the fault-unknown mode when the fault diagnosis information is non-existent for control signal generation. These two modes share an adaptive mechanism that reduces the complexity of the algorithm. Findings The new fault-tolerant attitude control algorithm can accommodate both modes with and without fault diagnosis mechanisms. Originality/value The proposed algorithm in this paper can be applied to both cases when the attitude control system is equipped with or without fault diagnosis capability. This also enhances the robustness of attitude control algorithm. This study performs numerical simulations and verifies that the algorithm could effectively adapt to both modes.

2014 ◽  
Vol 2014 ◽  
pp. 1-17
Author(s):  
Fei Song ◽  
Shiyin Qin

This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.


2021 ◽  
Vol 01 (01) ◽  
pp. 2150001
Author(s):  
Jianye Gong ◽  
Yajie Ma ◽  
Bin Jiang ◽  
Zehui Mao

In this paper, the adaptive fault-tolerant formation tracking control problem for a set of heterogeneous unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) systems with actuator loss of effectiveness faults is investigated. The cooperative fault-tolerant formation control strategy for UAV and UGV collaborative systems is classified into the altitude consensus control scheme for follower UAVs and the position cooperative formation control scheme for all followers. The altitude consensus control algorithm is designed by utilizing backstepping control technique to drive all UAVs to a desired predefined height. Then, based on synchronization formation error information, the position cooperative formation control algorithm is proposed for all followers to reach the expected position and perform the desired formation configuration. The adaptive fault estimation term is adopted in the designed fault-tolerant formation control algorithm to compensate for the actuator loss of effectiveness fault. Finally, a simulation example is proposed to reveal the validity of the designed cooperative formation tracking control scheme.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chengxi Zhang ◽  
Hui-Jie Sun ◽  
Jin Wu ◽  
Zhongyang Fei ◽  
Yu Jiang ◽  
...  

Purpose This paper aims to study the attitude control problem with mutating orbital rate and actuator fading. Design/methodology/approach To avoid malicious physical attacks and hide itself, the spacecraft may irregularly switch its orbit altitude within a specific range, which will bring about variations in orbital rate, thereby causing mutations in the attitude dynamics model. The actuator faults will also cause changes in system dynamics. Both factors affect the control performance. First, this paper determines the potential switching orbits. Then under different conditions, design controllers that can accommodate actuator faults according to the statistical law of actuator fading. Findings This paper, to the best of the authors’ knowledge, for the first time, introduces the Markovian jump framework to model the possible unexpected mutating of orbital rate and actuator fading of spacecraft and then designs a novel control policy to solve the attitude control problem. Practical implications This paper also provides the algorithm design processes in detail. A comparative numerical simulation is given to verify the effectiveness of the proposed algorithm. Originality/value This is an early solution for spacecraft attitude control with dynamics model mutations.


Sign in / Sign up

Export Citation Format

Share Document