Multiobjective optimization of the flaxseed mucilage extraction process using normal-boundary intersection approach

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mariana Souza Rocha ◽  
Luiz Célio Souza Rocha ◽  
Marcia Barreto da Silva Feijó ◽  
Paula Luiza Limongi dos Santos Marotta ◽  
Samanta Cardozo Mourão

PurposeThe mucilage of the Linum usitatissimum L. seed (Linseed) is one of the natural mucilages that presents a great potential to provide a food hydrocolloid with potential applications in both food and pharmaceutical industries. To increase the yield and quality of linseed oil during its production process, it is necessary to previously extract its polysaccharides. Because of this, flax mucilage production can be made viable as a byproduct of oil extraction process, which is already a product of high commercial value consolidated in the market. Thus, the purpose of this work is to optimize the mucilage extraction process of L. usitatissimum L. using the normal-boundary intersection (NBI) multiobjective optimization method.Design/methodology/approachCurrently, the variables of the process of polysaccharide extraction from different sources are optimized using the response surface methodology. However, when the optimal points of the responses are conflicting it is necessary to study the best conditions to achieve a balance between these conflicting objectives (trade-offs) and to explore the available options it is necessary to formulate an optimization problem with multiple objectives. The multiobjective optimization method used in this work was the NBI developed to find uniformly distributed and continuous Pareto optimal solutions for a nonlinear multiobjective problem.FindingsThe optimum extraction point to obtain the maximum fiber concentration in the extracted material was pH 3.81, temperature of 46°C, time of 13.46 h. The maximum extraction yield of flaxseed was pH 6.45, temperature of 65°C, time of 14.41 h. This result confirms the trade-off relationship between the objectives. NBI approach was able to find uniformly distributed Pareto optimal solutions, which allows to analyze the behavior of the trade-off relationship. Thus, the decision-maker can set extraction conditions to achieve desired characteristics in mucilage.Originality/valueThe novelty of this paper is to confirm the existence of a trade-off relationship between the productivity parameter (yield) and the quality parameter (fiber concentration in the extracted material) during the flaxseed mucilage extraction process. The NBI approach was able to find uniformly distributed Pareto optimal solutions, which allows us to analyze the behavior of the trade-off relationship. This allows the decision-making to the extraction conditions according to the desired characteristics of the final product, thus being able to direct the extraction for the best applicability of the mucilage.

Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 32 ◽  
Author(s):  
Benjamín Barán ◽  
Marcos Villagra

In this work we show how to use a quantum adiabatic algorithm to solve multiobjective optimization problems. For the first time, we demonstrate a theorem proving that the quantum adiabatic algorithm can find Pareto-optimal solutions in finite-time, provided some restrictions to the problem are met. A numerical example illustrates an application of the theorem to a well-known problem in multiobjective optimization. This result opens the door to solve multiobjective optimization problems using current technology based on quantum annealing.


2019 ◽  
Vol 53 (3) ◽  
pp. 867-886
Author(s):  
Mehrdad Ghaznavi ◽  
Narges Hoseinpoor ◽  
Fatemeh Soleimani

In this study, a Newton method is developed to obtain (weak) Pareto optimal solutions of an unconstrained multiobjective optimization problem (MOP) with fuzzy objective functions. For this purpose, the generalized Hukuhara differentiability of fuzzy vector functions and fuzzy max-order relation on the set of fuzzy vectors are employed. It is assumed that the objective functions of the fuzzy MOP are twice continuously generalized Hukuhara differentiable. Under this assumption, the relationship between weakly Pareto optimal solutions of a fuzzy MOP and critical points of the related crisp problem is discussed. Numerical examples are provided to demonstrate the efficiency of the proposed methodology. Finally, the convergence analysis of the method under investigation is discussed.


Author(s):  
Gonggui Chen ◽  
Lilan Liu ◽  
Yanyan Guo ◽  
Shanwai Huang

Purpose – For one thing, despite the fact that it is popular to research the minimization of the power losses in power systems, the optimization of single objective seems insufficient to fully improve the performance of power systems. Multi-objective VAR Dispatch (MVARD) generally minimizes two objectives simultaneously: power losses and voltage deviation. The purpose of this paper is to propose Multi-Objective Enhanced PSO (MOEPSO) algorithm that achieves a good performance when applied to solve MVARD problem. Thus, the new algorithm is worthwhile to be known by the public. Design/methodology/approach – Motivated by differential evolution algorithm, cross-over operator is introduced to increase particle diversity and reinforce global searching capacity in conventional PSO. In addition to that, a constraint-handling approach considering Constrain-prior Pareto-Dominance (CPD) is presented to handle the inequality constraints on dependent variables. Constrain-prior Nondominated Sorting (CNS) and crowding distance methods are considered to maintain well-distributed Pareto optimal solutions. The method combining CPD approach, CNS technique, and cross-over operator is called the MOEPSO method. Findings – The IEEE 30 node and IEEE 57 node on power systems have been used to examine and test the presented method. The simulation results show the MOEPSO method can achieve lower power losses, smaller voltage deviation, and better-distributed Pareto optimal solutions comparing with the Multi-Objective PSO approach. Originality/value – The most original parts include: the presented MOEPSO algorithm, the CPD approach that is used to handle constraints on dependent variables, and the CNS method which is considered to maintain a well-distributed Pareto optimal solutions. The performance of the proposed algorithm successfully reflects the value of this paper.


2019 ◽  
Vol 22 (3) ◽  
pp. 67-78
Author(s):  
A. V. Panteleev ◽  
A. U. Krychkov

The article suggests a modification for numerical fireworks method of the single-objective optimization for solving the problem of multiobjective optimization. The method is metaheuristic. It does not guarantee finding the exact solution, but can give a good approximate result. Multiobjective optimization problem is considered with numerical criteria of equal importance. A possible solution to the problem is a vector of real numbers. Each component of the vector of a possible solution belongs to a certain segment. The optimal solution of the problem is considered a Pareto optimal solution. Because the set of Pareto optimal solutions can be infinite; we consider a method for finding an approximation consisting of a finite number of Pareto optimal solutions. The modification is based on the procedure of non-dominated sorting. It is the main procedure for solutions search. Non-dominated sorting is the ranking of decisions based on the values of the numerical vector obtained using the criteria. Solutions are divided into disjoint subsets. The first subset is the Pareto optimal solutions, the second subset is the Pareto optimal solutions if the first subset is not taken into account, and the last subset is the Pareto optimal solutions if the rest subsets are not taken into account. After such a partition, the decision is made to create new solutions. The method was tested on well-known bi-objective optimization problems: ZDT2, LZ01. Structure of the location of Pareto optimal solutions differs for the problems. LZ01 have complex structure of Pareto optimal solutions. In conclusion, the question of future research and the issue of modifying the method for problems with general constraints are discussed.


2002 ◽  
Vol 10 (3) ◽  
pp. 263-282 ◽  
Author(s):  
Marco Laumanns ◽  
Lothar Thiele ◽  
Kalyanmoy Deb ◽  
Eckart Zitzler

Over the past few years, the research on evolutionary algorithms has demonstrated their niche in solving multiobjective optimization problems, where the goal is to find a number of Pareto-optimal solutions in a single simulation run. Many studies have depicted different ways evolutionary algorithms can progress towards the Pareto-optimal set with a widely spread distribution of solutions. However, none of the multiobjective evolutionary algorithms (MOEAs) has a proof of convergence to the true Pareto-optimal solutions with a wide diversity among the solutions. In this paper, we discuss why a number of earlier MOEAs do not have such properties. Based on the concept of ɛ-dominance, new archiving strategies are proposed that overcome this fundamental problem and provably lead to MOEAs that have both the desired convergence and distribution properties. A number of modifications to the baseline algorithm are also suggested. The concept of ɛ-dominance introduced in this paper is practical and should make the proposed algorithms useful to researchers and practitioners alike.


OPSEARCH ◽  
2016 ◽  
Vol 53 (4) ◽  
pp. 778-807 ◽  
Author(s):  
Satya Prakash ◽  
Anuj Gupta ◽  
Richa Garg ◽  
Bhuvnesh Tanwar ◽  
Deepika Kaushik ◽  
...  

2010 ◽  
Vol 2010 (0) ◽  
pp. _547-1_-_547-6_
Author(s):  
Yuichiro SAKAMOTO ◽  
Yasuhiro BONKOBARA ◽  
Takahiro KONDOU ◽  
Kenzi ABE ◽  
Hiroyuki KUROKI

Sign in / Sign up

Export Citation Format

Share Document