Optimal shape design of flux barriers in IPM synchronous motors using the phase field method

Author(s):  
Jae Seok Choi ◽  
Takayuki Yamada ◽  
Kazuhiro Izui ◽  
Shinji Nishiwaki ◽  
Heeseung Lim ◽  
...  

Purpose – The purpose of this paper is to present an optimization method for flux barrier designs in interior permanent magnet (IPM) synchronous motors that aims to produce an advantageous sinusoidal flux density distribution in the air-gap. Design/methodology/approach – The optimization is based on the phase field method using an Allen-Cahn equation. This approach is a numerical technique for tracking diffuse interfaces like the level set method based on the Hamilton-Jacobi equation. Findings – The optimization results of IPM motor designs are highly dependent on the initial flux barrier shapes. The authors solve the optimization problem using two different initial shapes, and the optimized models show considerable reductions in torque pulsation and the higher harmonics of back-electromotive force. Originality/value – This paper presents the optimization method based on the phase field for the design of rotor flux barriers, and proposes a novel interpolation scheme of the magnetic reluctivity.

2019 ◽  
Vol 30 (6) ◽  
pp. 3005-3025
Author(s):  
Przemysław Smakulski ◽  
Sławomir Pietrowicz ◽  
Jun Ishimoto

Purpose This paper aims to describe and investigate the mathematical models and numerical modeling of how a cell membrane is affected by a transient ice freezing front combined with the influence of thermal fluctuations and anisotropy. Design/methodology/approach The study consists of mathematical modeling, validation with an analytical solution, and shows the influence of thermal noises on phase front dynamics and how it influences the freezing process of a single red blood cell. The numerical calculation has been modeled in the framework of the phase field method with a Cahn–Hilliard formulation of a free energy functional. Findings The results show an influence scale on directional phase front propagation dynamics and how significant are stochastic thermal noises in micro-scale freezing. Originality/value The numerical calculation has modeled in the framework of the phase field method with a Cahn–Hilliard formulation of a free energy functional.


2011 ◽  
Vol 6 (3) ◽  
pp. 567-578 ◽  
Author(s):  
Takayuki YAMADA ◽  
Shinji NISHIWAKI ◽  
Kazuhiro IZUI ◽  
Masataka YOSHIMURA ◽  
Akihiro TAKEZAWA

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Somnath Santra ◽  
Shubhadeep Mandal ◽  
Suman Chakraborty

Purpose The purpose of this study is to perform a detailed review on the numerical modeling of multiphase and multicomponent flows in microfluidic system using phase-field method. The phase-field method is of emerging importance in numerical computation of transport phenomena involving multiple phases and/or components. This method is not only used to model interfacial phenomena typical to multiphase flows encountered in engineering and nature but also turns out to be a promising tool in modeling the dynamics of complex fluid-fluid interfaces encountered in physiological systems such as dynamics of vesicles and red blood cells). Intrinsically, a priori unknown topological evolution of interfaces offers to be the most concerning challenge toward accurate modeling of moving boundary problems. However, the numerical difficulties can be tackled simultaneously with numerical convenience and thermodynamic rigor in the paradigm of the phase field method. Design/methodology/approach The phase-field method replaces the macroscopically sharp interfaces separating the fluids by a diffuse transition layer where the interfacial forces are smoothly distributed. As against the moving mesh methods (Lagrangian) for the explicit tracking of interfaces, the phase-field method implicitly captures the same through the evolution of a phase-field function (Eulerian). In contrast to the deployment of an artificially smoothing function for the interface as used in the volume of a fluid or level set method, however, the phase-field method uses mixing free energy for describing the interface. This needs the consideration of an additional equation for an order parameter. The dynamic evolution of the system (equation for order parameter) can be described by Allen–Cahn or Cahn–Hilliard formulation, which couples with the Navier–Stokes equation with the aid of a forcing function that depends on the chemical potential and the gradient of the order parameter. Findings In this review, first, the authors discuss the broad motivation and the fundamental theoretical foundation associated with phase-field modeling from the perspective of computational microfluidics. They subsequently pinpoint the outstanding numerical challenges, including estimations of the model-free parameters. They outline some numerical examples, including electrohydrodynamic flows, to demonstrate the efficacy of the method. Finally, they pinpoint various emerging issues and futuristic perspectives connecting the phase-field method and computational microfluidics. Originality/value This paper gives unique perspectives to future directions of research on this topic.


2021 ◽  
Vol 26 ◽  
pp. 102150
Author(s):  
Dong-Cho Kim ◽  
Tomo Ogura ◽  
Ryosuke Hamada ◽  
Shotaro Yamashita ◽  
Kazuyoshi Saida

Sign in / Sign up

Export Citation Format

Share Document