mass flow
Recently Published Documents





Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 673
Yaxiang Zeng ◽  
Remco Sanders ◽  
Remco J. Wiegerink ◽  
Joost C. Lötters

A micro-Coriolis mass flow sensor is a resonating device that measures small mass flows of fluid. A large vibration amplitude is desired as the Coriolis forces due to mass flow and, accordingly, the signal-to-noise ratio, are directly proportional to the vibration amplitude. Therefore, it is important to maximize the quality factor Q so that a large vibration amplitude can be achieved without requiring high actuation voltages and high power consumption. This paper presents an investigation of the Q factor of different devices in different resonant modes. Q factors were measured both at atmospheric pressure and in vacuum. The measurement results are compared with theoretical predictions. In the atmospheric environment, the Q factor increases when the resonance frequency increases. When reducing the pressure from 1 to 0.1 , the Q factor almost doubles. At even lower pressures, the Q factor is inversely proportional to the pressure until intrinsic effects start to dominate, resulting in a maximum Q factor of approximately 7200.

2022 ◽  
pp. 1-15
Pranay Seshadri ◽  
Andrew Duncan ◽  
George Thorne

Abstract This paper introduces the Bayesian mass average and details its computation. Owing to the complexity of flow in an engine and the limited instrumentation and the precision of the sensor apparatus used, it is difficult to rigorously calculate mass averages. Building upon related work, this paper views any thermodynamic quantity's spatial variation at an axial plane in an engine (or a rig) as a Gaussian random field. In cases where the mass flow rate is constant in the circumferential direction but can be expressed via a polynomial or spline radially, this paper presents an analytical calculation of the Bayesian mass average. In cases where the mass flow rate itself can be expressed as a Gaussian random field, a sampling procedure is presented to calculate the Bayesian mass average. Examples of the calculation of the Bayesian mass average for temperature are presented, including with a real engine case study where velocity profiles are inferred from stagnation pressure measurements.

2022 ◽  
Vol 12 (2) ◽  
pp. 744
Xinglong Zhang ◽  
Lingwei Li ◽  
Tianhong Zhang

The main data source for the verification of surge detection methods still rely on test rigs of the compressor or the whole engine, which makes the development of models of the whole engine surge process an urgent need to replace the high-cost and high-risk surge test. In this paper, a novel real-time surge model based on the surge mechanism is proposed. Firstly, the turboshaft engine component level model (CLM) and the classic surge dynamic model, Moore-Greitzer (MG) model is established. Then the stability of the MG model is analyzed and the compressor characteristics in the classical MG model are extended to establish the extended MG model. Finally, this paper considers the coupling relationship of the compressor’s rotor speed, mass flow and pressure between CLM and the extended MG model to establish the real-time model of the turboshaft engine with surge process. The simulation results show that this model can realize the whole surge process of the turboshaft engine under multiple operating states. The change characteristics of the rotor speed, compressor outlet pressure, mass flow, exhaust gas temperature and other parameters are consistent with the test data, which means that the model proposed can be further applied to the research of surge detection and anti-surge control.

2022 ◽  
Vol 16 (2) ◽  
pp. 41-47
V. I. Lysenko ◽  
B. V. Smorodsky ◽  
A. D. Kosinov

Experiments on the influence of distributed injection of helium on the development of the supersonic boundary layer unstable disturbances have been performed. It is revealed, that injection of helium in a certain range of blowing mass flow rate, leads to a certain decrease of spatial amplification rates of natural disturbances.

Xudong Shi ◽  
Jinjian Huo ◽  
Jianwei Hu ◽  
Xin Lu

The aero-engine will produce fouling during operation, which will affect the engine performance. On-line cleaning can effectively remove fouling, in order to solve the problem of the poor cleaning effect for aero-engine on-wing cleaning and carry out numerical simulation of the on-line cleaning process. The discrete phase model is used to optimize the particle size and mass flow of the cleaning fluid. The erosion rate and vorticity of the droplets on the blade surface are used as the effect target to simulate and optimize the cleaning process parameters to obtain a better particle size range and the ratio of cleaning fluid to air mass flow. Through the evaluation of the cleaning process parameters of the aero-engine on-wing cleaning test and the analysis of the engine exhaust temperature margin (EGTM) data, it is concluded that the cleaning effect is improved by nearly 40%.

2022 ◽  
Vol 21 (12) ◽  
pp. 300
Tian-Ci Zheng ◽  
Long Li ◽  
Le Zou ◽  
Xiang-Gao Wang

Abstract The X-ray flares have usually been ascribed to long-lasting activities of the central engine of gamma-ray bursts (GRBs), e.g., fallback accretion. The GRB X-ray plateaus, however, favor a millisecond magnetar central engine. The fallback accretion can be significantly suppressed due to the propeller effect of a magnetar. Therefore, if the propeller regime cannot resist the mass flow onto the surface of the magnetar efficiently, the X-ray flares raising upon the magnetar plateau would be expected. In this work, such peculiar cases are connected to the accretion process of the magnetars, and an implication for magnetar-disc structure is given. We investigate the repeated accretion process with multi-flare GRB 050730, and give a discussion for the accretion-induced variation of the magnetic field in GRB 111209A. Two or more flares exhibit in the GRB 050730, 060607A and 140304A; by adopting magnetar mass M = 1.4 M ⊙ and radius R = 12 km, the average mass flow rates of the corresponding surrounding disk are 3.53 × 10−4 M ⊙ s−1, 4.23 × 10−4 M ⊙ s−1, and 4.33 × 10−4 M ⊙ s−1, and the corresponding average sizes of the magnetosphere are 5.01 × 106 cm, 6.45 × 106 cm, and 1.09 × 107 cm, respectively. A statistic analysis that contains eight GRBs within 12 flares shows that the total mass loading in single flare is ∼ 2 × 10−5 M ⊙. In the lost mass of a disk, there are about 0.1% used to feed a collimated jet.

Sign in / Sign up

Export Citation Format

Share Document