Accurate analytical/numerical solution of the heat conduction equation

2014 ◽  
Vol 24 (7) ◽  
pp. 1519-1536 ◽  
Author(s):  
Antonio Campo ◽  
Abraham J. Salazar ◽  
Diego J. Celentano ◽  
Marcos Raydan

Purpose – The purpose of this paper is to address a novel method for solving parabolic partial differential equations (PDEs) in general, wherein the heat conduction equation constitutes an important particular case. The new method, appropriately named the Improved Transversal Method of Lines (ITMOL), is inspired in the Transversal Method of Lines (TMOL), with strong insight from the method of separation of variables. Design/methodology/approach – The essence of ITMOL revolves around an exponential variation of the dependent variable in the parabolic PDE for the evaluation of the time derivative. As will be demonstrated later, this key step is responsible for improving the accuracy of ITMOL over its predecessor TMOL. Throughout the paper, the theoretical properties of ITMOL, such as consistency, stability, convergence and accuracy are analyzed in depth. In addition, ITMOL has proven to be unconditionally stable in the Fourier sense. Findings – In a case study, the 1-D heat conduction equation for a large plate with symmetric Dirichlet boundary conditions is transformed into a nonlinear ordinary differential equation by means of ITMOL. The numerical solution of the resulting differential equation is straightforward and brings forth a nearly zero truncation error over the entire time domain, which is practically nonexistent. Originality/value – Accurate levels of the analytical/numerical solution of the 1-D heat conduction equation by ITMOL are easily established in the entire time domain.

1964 ◽  
Vol 60 (4) ◽  
pp. 897-907 ◽  
Author(s):  
M. Wadsworth ◽  
A. Wragg

AbstractThe replacement of the second space derivative by finite differences reduces the simplest form of heat conduction equation to a set of first-order ordinary differential equations. These equations can be solved analytically by utilizing the spectral resolution of the matrix formed by their coefficients. For explicit boundary conditions the solution provides a direct numerical method of solving the original partial differential equation and also gives, as limiting forms, analytical solutions which are equivalent to those obtainable by using the Laplace transform. For linear implicit boundary conditions the solution again provides a direct numerical method of solving the original partial differential equation. The procedure can also be used to give an iterative method of solving non-linear equations. Numerical examples of both the direct and iterative methods are given.


2013 ◽  
Vol 17 (3) ◽  
pp. 951-952 ◽  
Author(s):  
Zhao-Ling Tao ◽  
Guo-Hua Chen

The heat conduction equation is re-studied by the semi-inverse method combined with separation of variables; a new variational principle for the heat conduction equation is obtained. Equivalence of the existed two in literature is shown. The significance of variable separation is confirmed once more.


Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2617-2628
Author(s):  
K.Y. Kung ◽  
Man-Feng Gong ◽  
H.M. Srivastava ◽  
Shy-Der Lin

The principles of superposition and separation of variables are used here in order to investigate the analytical solutions of a certain transient heat conduction equation. The structure of the transient temperature appropriations and the heat-transfer distributions are summed up for a straight mix of the results by means of the Fourier-Bessel arrangement of the exponential type for the investigated partial differential equation.


2003 ◽  
Author(s):  
Kal Renganathan Sharma

Mesoscopic approach deals with study that considers temporal fluctuations which is often averaged out in a macroscopic approach without going into the molecular or microscopic approach. Transient heat conduction cannot be fully described by Fourier representation. The non-Fourier effects or finite speed of heat propagation effect is accounted for by some investigators using the Cattaneo and Vernotte non-Fourier heat conduction equation: q=−k∂T/∂x−τr∂q/∂t(1) A generalized expression to account for the non-Fourier or thermal inertia effects suggested by Sharma (5) as: q=−k∂T/∂x−τr∂q/∂t−τr2/2!∂2q/∂t2−τr3/3!∂3q/∂t3−…(2) This was obtained by a Taylor series expansion in time domain. Manifestation of higher order terms in the modified Fourier’w law as periodicity in the time domain is considered in this study. When a CWT is maintained at one end of a medium of length L where L is the distance from the isothermal wall beyond which there is no appreciable temperature change from the initial condition during the duration of the study the transient temperature profile is obtained by the method of Laplace transforms. The space averaged heat flux is obtained and upon inversion from Laplace domain found to be a constant for the the case obeying Fourier’s law; 1 − exp(−τ) using the Cattaneo and Vernotte non-Fourier heat conduction equation, and upon introduction of the second derivative in time of the heat flux the expression becomes, 1 − exp(−τ)(Sin(τ) + Cos(τ)). Thus the periodicity in time domain is lost when the higher order terms in the generalized Fourier expression is neglected.


Sign in / Sign up

Export Citation Format

Share Document