fourier heat conduction
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 51)

H-INDEX

24
(FIVE YEARS 3)

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1447
Author(s):  
Liangrong Peng ◽  
Liu Hong

The main purpose of this review is to summarize the recent advances of the Conservation–Dissipation Formalism (CDF), a new way for constructing both thermodynamically compatible and mathematically stable and well-posed models for irreversible processes. The contents include but are not restricted to the CDF’s physical motivations, mathematical foundations, formulations of several classical models in mathematical physics from master equations and Fokker–Planck equations to Boltzmann equations and quasi-linear Maxwell equations, as well as novel applications in the fields of non-Fourier heat conduction, non-Newtonian viscoelastic fluids, wave propagation/transportation in geophysics and neural science, soft matter physics, etc. Connections with other popular theories in the field of non-equilibrium thermodynamics are examined too.


Author(s):  
B. Tomczyk ◽  
M. Gołąbczak ◽  
A. Litawska ◽  
A. Gołąbczak

AbstractThe objects of consideration are thin linearly thermoelastic Kirchhoff-Love-type circular cylindrical shells having a periodically microheterogeneous structure in circumferential and axial directions (biperiodic shells). The aim of this contribution is to formulate and discuss two new averaged mathematical models for the analysis of selected dynamic thermoelasticity problems for the shells under consideration: the non-asymptotictolerance and the consistent asymptotic models. The starting equations are the well-known governing equations of linear Kirchhoff-Love theory of thin elastic cylindrical shells combined with Duhamel–Neumann thermoelastic constitutive relations and coupled with the known linearized Fourier heat conduction equation in which the heat sources are neglected. For the microperiodic shells under consideration, the starting equations mentioned above have highly oscillating, non-continuous and periodic coefficients. The tolerance model is derived applying the tolerance averaging technique and a certain extension of the known stationary action principle. It has constant coefficients depending also on a cell size. Hence, this model makes it possible to study the effect of a microstructure size on the global shell thermoelasticity (the length-scale effect). The consistent asymptotic model is obtained using the consistent asymptotic approach. It has constant coefficients being independent of the period lengths. Moreover, the comparison between the tolerance model for biperiodic shells proposed here and the known tolerance model for cylindrical shells with a periodic structure in the circumferential direction only (uniperiodic shells) is presented.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1877
Author(s):  
Piran Goudarzi ◽  
Awatef Abidi ◽  
Seyed Abdollah Mansouri Mehryan ◽  
Mohammad Ghalambaz ◽  
Mikhail A. Sheremet

In this work, the relaxation parameter (τ) and fractionality order (α) in the fractional single phase lag (FSPL) non-Fourier heat conduction model are estimated by employing the conjugate gradient inverse method (CGIM). Two different physics of skin tissue are chosen as the studied cases; single and three-layer skin tissues. Single-layer skin is exposed to laser radiation having the constant heat flux of Qin. However, a heat pulse with constant temperature is imposed on the three-layer skin. The required inputs for the inverse problem in the fractional diffusion equation are chosen from the outcomes of the dual phase lag (DPL) theory. The governing equations are solved numerically by utilizing implicit approaches. The results of this study showed the efficiency of the CGIM to estimate the unknown parameters in the FSPL model. In fact, obtained numerical results of the CGIM are in excellent compatibility with the FSPL model.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mátyás Szücs ◽  
Michal Pavelka ◽  
Róbert Kovács ◽  
Tamás Fülöp ◽  
Péter Ván ◽  
...  

Abstract Applying simultaneously the methodology of non-equilibrium thermodynamics with internal variables (NET-IV) and the framework of General Equation for the Non-Equilibrium Reversible–Irreversible Coupling (GENERIC), we demonstrate that, in heat conduction theories, entropy current multipliers can be interpreted as relaxed state variables. Fourier’s law and its various extensions—the Maxwell–Cattaneo–Vernotte, Guyer–Krumhansl, Jeffreys type, Ginzburg–Landau (Allen–Cahn) type and ballistic–diffusive heat conduction equations—are derived in both formulations. Along these lines, a comparison of NET-IV and GENERIC is also performed. Our results may pave the way for microscopic/multiscale understanding of beyond-Fourier heat conduction and open new ways for numerical simulations of heat conduction problems.


Sign in / Sign up

Export Citation Format

Share Document