Efficient complex matrix multiplication

1988 ◽  
Vol 37 (7) ◽  
pp. 877-879 ◽  
Author(s):  
A.T. Fam

2017 ◽  
Vol 44 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Field G. Van Zee ◽  
Tyler M. Smith




2021 ◽  
Vol 1821 (1) ◽  
pp. 012022
Author(s):  
Nurul Yakim Kazal ◽  
Imam Mukhlash ◽  
Bandung Arry Sanjoyo ◽  
Nurul Hidayat ◽  
Katsuhisa Ozaki


1987 ◽  
Author(s):  
Adly T. Fam




Author(s):  
Yaniv Aspis ◽  
Krysia Broda ◽  
Alessandra Russo ◽  
Jorge Lobo

We introduce a novel approach for the computation of stable and supported models of normal logic programs in continuous vector spaces by a gradient-based search method. Specifically, the application of the immediate consequence operator of a program reduct can be computed in a vector space. To do this, Herbrand interpretations of a propositional program are embedded as 0-1 vectors in $\mathbb{R}^N$ and program reducts are represented as matrices in $\mathbb{R}^{N \times N}$. Using these representations we prove that the underlying semantics of a normal logic program is captured through matrix multiplication and a differentiable operation. As supported and stable models of a normal logic program can now be seen as fixed points in a continuous space, non-monotonic deduction can be performed using an optimisation process such as Newton's method. We report the results of several experiments using synthetically generated programs that demonstrate the feasibility of the approach and highlight how different parameter values can affect the behaviour of the system.



2016 ◽  
Vol 53 (2) ◽  
pp. 93-114
Author(s):  
Jesús Pinto ◽  
John Warme

We interpret a discrete, anomalous ~10-m-thick interval of the shallow-marine Middle to Late Devonian Valentine Member of the Sultan Formation at Frenchman Mountain, southern Nevada, to be a seismite, and that it was generated by the Alamo Impact Event. A suite of deformation structures characterize this unique interval of peritidal carbonate facies at the top of the Valentine Member; no other similar intervals have been discovered in the carbonate beds on Frenchman Mountain or in equivalent Devonian beds exposed in ranges of southern Nevada. The disrupted band extends for 5 km along the Mountain, and onto the adjoining Sunrise Mountain fault block for an additional 4+km. The interval displays a range of brittle, ductile and fluidized structures, and is divided into four informal bed-parallel units based on discrete deformation style and internal features that carry laterally across the study area. Their development is interpreted as the result of intrastratal compressional and contractional forces imposed upon the unconsolidated to fully cemented near-surface carbonate sediments at the top of the Valentine Member. The result is an assemblage of fractured, faulted, and brecciated beds, some of which were dilated, fluidized and injected to form new and complex matrix bands between beds. We interpret that the interval is an unusually thick and well displayed seismite. Because the Sultan Formation correlates northward to the Frasnian (lower Upper Devonian) carbonate rocks of the Guilmette Formation, and the Guilmette contains much thicker and more proximal exposures of the Alamo Impact Breccia, including seismites, we interpret the Frenchman Mountain seismite to be a far-field product of the Alamo Impact Event. Accompanying ground motion and deformation of the inner reaches of the Devonian carbonate platform may have resulted in a fall of relative sea level and abrupt shift to a salt-pan paleoenvironment exhibited by the post-event basal beds of the directly overlying Crystal Pass Member.



1983 ◽  
Author(s):  
I. V. Ramakrishnan ◽  
P. J. Varman


Sign in / Sign up

Export Citation Format

Share Document