The Mountain Geologist
Latest Publications


TOTAL DOCUMENTS

68
(FIVE YEARS 35)

H-INDEX

4
(FIVE YEARS 2)

Published By Rocky Mountain Association Of Geologists

0027-254x

2021 ◽  
Vol 58 (2) ◽  
pp. 159-204
Author(s):  
Bruce Hart ◽  
Scott Cooper

We characterize relationships between stratigraphy and natural fractures in outcrops of Mesozoic strata that rim the San Juan Basin in New Mexico and Colorado. These outcrops expose fluvial and shallow-marine siliciclastic deposits and calcareous mudstones deposited in a distal marine setting. We focus primarily on a regionally extensive fracture set formed during the Eocene to minimize localized tectonic effects on fracture development. Where possible, we supplement our observations with wireline log- or laboratory-derived measurements of rock properties. Our goals are twofold: 1) to illustrate how direct integration of data and concepts from stratigraphy and structural geology can lead to better fracture characterization, and 2) to develop thought processes that will stimulate new exploration and development strategies. Genetic beds form one scale of stratification in the outcrops we describe. For example, sandstone beds can be arranged into coarsening and thickening upward successions that are the depositional record of shoreline progradation. In fluvial settings, cm- to dm-scale sandstone beds can also be part of m-scale single-storey channel complexes that, themselves, can be arranged into amalgamated channel complexes 10s of m thick. In these and other settings, it is important to distinguish between beds and features that can be defined via wireline logs because it is the former (cm- to dm-scale) that are usually the primary control the distribution of natural fractures. The extension fractures we describe are typically bed-bound, with bedding being defined by lithology contrasts and the associated changes in elastic properties. Fracture spacing distributions are typically lognormal with average spacing being less than bed thickness. Although mechanical bedding and depositional bedding are commonly the same, diagenesis can cut across bed boundaries and complicate this relationship, especially where lithologic contrasts are small. Deposits from similar depositional environments which undergo different diagenetic histories can have substantially different mechanical properties and therefore deform differently in response to similar imposed stresses.


2021 ◽  
Vol 58 (2) ◽  
pp. 43-103
Author(s):  
Bruce Hart

This paper examines the relationships between stratigraphy and hydrocarbon production from the San Juan Basin of New Mexico and Colorado. Abundant data and the long production history allow lessons to be learned, both from an exploration and development perspective, that can be applied in other basins. Conversely, as new play types and technologies are defined and developed elsewhere, the applicability of those tools in the San Juan Basin needs to be understood for well-informed exploration and development activities to continue. The San Juan Basin is a Latest Cretaceous – Tertiary (Paleogene) structure that contains rocks deposited from the Lower Paleozoic to the Tertiary, but only the Upper Cretaceous section has significant hydrocarbon, mostly gas, production. Herein I make the case for studying depositional systems, and the controls thereon (e.g., basin development, eustasy, sediment supply), because they are the first-order controls on whether a sedimentary basin can become a hydrocarbon province, or super basin as the San Juan Basin has recently been defined. Only in the Upper Cretaceous did a suitable combination of forcing mechanisms combine to form source and reservoir rocks, and repeated transgressive-regressive cycles of the Upper Cretaceous stacked multiple successions of source and reservoir rocks in a way that leads to stacked pay potential. Because of the types of depositional systems that could develop, the source rocks were primarily gas prone, like those of other Rocky Mountain basins. Oil-prone source rocks are present but primarily restricted to episodes of peak transgression. A lack of suitable trapping mechanisms helps to explain the relative dearth of conventional oil pools. Although gas production has dropped precipitously in the past decade, driven primarily by overabundance of gas supply associated with the shale-gas boom, the combination of horizontal drilling and multi-stage hydraulic fracturing is being applied to revive oil production from some unconventional stratigraphic targets with success.


2021 ◽  
Vol 58 (2) ◽  
pp. 105-157
Author(s):  
Walter W. Nelson ◽  
Stephen A. Sonnenberg

In the northern San Juan Basin, the Niobrara Formation is represented by the upper half of the Mancos Shale (the Smoky Hill Member and Cortez Member). This section is generally equivalent to the Niobrara Formation along the Colorado Front Range. Although the Fort Hays Limestone is absent west of Pagosa Springs, the C Chalk and B Chalk are well-expressed as two resistant bench-forming calcareous units in the northern San Juan Basin. These two calcareous units have also been established as prospective hydrocarbon targets by operators in the area. Calcareous facies equivalent to the A Chalk were not deposited in the northern San Juan Basin due to siliciclastic dilution during the regressive latter half of the Niobrara marine cycle. The overall third-order Niobrara marine cycle includes these members of the Mancos Shale: the Juana Lopez, Montezuma Valley, Smoky Hill, and Cortez members. The Smoky Hill Member sits just above the basal Niobrara unconformity in most of the study area, and the entire section also has greater thickness and siliciclastic content than its equivalent farther east along the Front Range. Several extensive outcrop locations (in and around Pagosa Springs, Piedra, and Durango, CO) along with three new cores along the CO-NM border form the foundation for sequence stratigraphic interpretation of the Niobrara marine cycle in this study. All these locations and cores were tied back to the Mancos reference section at Mesa Verde National Park established by Leckie et al. (1997) which provides detailed description and biostratigraphy for the entire Mancos Shale. Establishing and applying a sequence stratigraphic framework to any section creates consistent reference standards for communication, research, and further correlation. Comparisons of chemostratigraphic data from equivalent strata between the northern San Juan Basin and Denver-Julesburg (DJ) Basin reveal significant differences in the timing and style of source-rock deposition (and associated low-oxygen conditions). The sequence stratigraphic framework also emphasizes tremendous lateral facies changes in the basal Niobrara section (i.e., Fort Hays Limestone to Tocito Sandstone). Once refined and applied, this stratigraphic framework can be used for predicting the distribution of reservoir properties, in addition to enhancing understanding of the Niobrara marine cycle and the Western Interior Seaway.


2021 ◽  
Vol 58 (1) ◽  
pp. 5-26
Author(s):  
Jordan T. Walker ◽  
Andres Aslan ◽  
Rex D. Cole ◽  
Michael T. Heizler

The precise age of terrestrial sediments in the Late Cretaceous Williams Fork Formation of western Colorado is poorly constrained due to a paucity of radiometric data. Sanidine and zircon dating of a volcanic ash encased in coal (i.e., the Coal Canyon ash) within the Cameo-Wheeler coal zone of the lower Williams Fork Formation in Coal Canyon, Colorado provides an important new age constraint for the southwestern Piceance Basin. A 10-30 cm thick, light gray, clayey mudstone encased in coal was sampled for both zircon U-Pb and sanidine 40Ar/39Ar geochronology. The presence of numerous euhedral zircon crystals, a lenticular geometry, and a clayey texture suggest that the mudstone is a minimally reworked and slightly altered volcanic ash. Analysis of the euhedral zircon crystals (n=108) in the ash produced a statistically robust U-Pb date with 93 grains yielding a weighed mean age of 74.52 ±0.11 Ma (1σ analytical uncertainty). 40Ar/39Ar sanidine analyses yielded a younger weighted mean age of 73.10 ±0.12 Ma (1σ analytical uncertainty) based on 6 of the 36 grains analyzed. Our preferred age is given by the weighted mean age of the sanidine as it is based on higher precision analyses that can better discriminate older inherited grains that are likely included in the zircon mean-age calculation. Isotopic data for the Coal Canyon ash overlap in age with a K-Ar date of 72.5 ±5.1 Ma for a widespread Williams Fork Formation tonstein, known as the Yampa Bed, found in coal-bearing outcrops and mine workings throughout the northern Piceance and Sand Wash basins and Axial Basin Uplift. Based on the similarity in isotopic age, sedimentologic context and stratigraphic position, we suggest that the Coal Canyon ash and the regionally extensive Yampa Bed are coeval. Additionally, this correlation corroborates that the Cameo-Wheeler coal zone of the Williams Fork Formation in the southwestern Piceance Basin is correlative with the Middle coal zone of the Danforth Hills and Yampa regions. Lastly, this proposed correlation may suggest that the Coal Canyon ash, like the Yampa Bed, correlates with the Baculites reesidei ammonite zone, which is associated regionally with a bentonite dated to 72.94 ±0.45 Ma. Detrital sanidine geochronology of two lower Williams Fork sandstone units that overly the Coal Canyon ash did not produce grains younger than the ash and thus do not quantitatively improve the chronostratigraphy of these specific units. Lastly, the Coal Canyon ash date serves as a basis for future evaluations of the diachroneity of non-marine strata of the Williams Fork Formation.


2021 ◽  
Vol 58 (1) ◽  
pp. 27-37
Author(s):  
Jeffrey W. Bader

The North Owl Creek fault is an E–W-striking, basement-rooted Laramide structure located in the Owl Creek Mountains of north-central Wyoming that likely has Precambrian origins. It is defined by a rectilinear zone of deformation that extends eastward into the subsurface where it is postulated to intersect the Kaycee fault zone of the western Powder River Basin, and perhaps extends into western South Dakota along the Dewey fault zone. Several localized basement-rooted wrench zones have been identified in the foreland of the North American Cordillera; however, identification of more regional zones has been minimal. The presence of larger fault zones that cut nearly the entire Archean basement across the Wyoming Province has implications for Precambrian plate tectonics and structural inheritance in foreland basins such as the Powder River. This paper presents results of a structural analysis that tests this hypothesis.


2020 ◽  
Vol 57 (4) ◽  
pp. 309-354
Author(s):  
Jason Eleson ◽  
Chip Oakes ◽  
Graham McClave

Limited horizontal drilling has occurred within the Niobrara-equivalent section of the Mancos Shale in the Piceance Basin, and the results from individual wells are highly variable. Prior studies have suggested that thermal maturity and completion techniques were the primary drivers for the observed production trends, but further analysis of well results indicates there are more variables at play. This study leveraged a comprehensive data set from the Piceance Basin, including core analyses, pressure data, and drilling and completion methods to provide additional context for the production results. From this analysis, several key trends were identified. North/south variations in thermal maturity were confirmed, as well as additional trends were identified revealing later exhumation south of the Rangely fault system resulted in significant depressurization, particularly in the western Piceance Basin. The semi-regional depressurization was the result of decrease in overburden pressures that allowed vertical migration of hydrocarbons out of the Mancos Shale. In addition to the semi-regional depressurization, there were more local depressurization events that resulted from faulting in areas such as the Orchard Unit in the southern Piceance Basin where thrust faults allowed hydrocarbons to migrate vertically into overlying formations. Northwest to southeast production trends are present in the southern Piceance Basin and are interpreted to reflect structurally undeformed areas based on high formation pressures and better producing horizontal wells. Parent-child effects have been observed locally and are linked to lower initial production rates and faster decline rates. The northern Piceance Basin exhibits higher reservoir pressure in the liquids window than was observed to the south due to the relatively low degree of exhumation and/or faulting in areas where horizontal Niobrara wells were drilled. Horizontal well results in the northern Piceance Basin have been mixed, largely due to inefficient completion strategies. By comparing the northern Piceance Basin wells with similar horizontal Niobrara wells in the Powder River Basin of northeastern Wyoming, it is concluded that drilling into the over-pressured liquids rim and utilizing slickwater frac fluid with friction reducer and 100 mesh sand will yield improved economic results over those obtained so far in the Piceance Basin. Though relatively few laterals have been drilled in the Piceance Basin Niobrara play, the basin has great future potential.


2020 ◽  
Vol 57 (4) ◽  
pp. 375-388
Author(s):  
Ryan Bessen ◽  
Jennifer Gifford ◽  
Zack Ledbetter ◽  
Sean McGuire ◽  
Kyle True ◽  
...  

This project involved the construction of a detailed geologic map of the Park Reservoir, Wyoming 7.5-Minute Quadrangle (Scale 1:24,000). The Quadrangle occurs entirely in the Bighorn National Forest, which is a popular recreation site for thousands of people each year. This research advances the scientific understanding of the geology of the Bighorn Mountains and the Archean geology of the Wyoming Province. Traditional geologic mapping techniques were used in concert with isotopic age determinations. Our goal was to further subdivide the various phases of the 2.8–3.0 Ga Archean rocks based on their rock types, age, and structural features. This research supports the broader efforts of the Wyoming State Geological Survey to complete 1:24,000 scale geologic maps of the state. The northern part of the Bighorn Mountains is composed of the Bighorn batholith, a composite complex of intrusive bodies that were emplaced between 2.96–2.87 Ga. Our mapping of the Park Reservoir Quadrangle has revealed the presence of five different Archean quartzofeldspathic units, two sets of amphibolite and diabase dikes, a small occurrence of the Cambrian Flathead Sandstone, two Quaternary tills, and Quaternary alluvium. The Archean rock units range in age from ca. 2.96–2.75 Ga, the oldest of which are the most ancient rocks yet reported in the Bighorn batholith. All the Archean rocks have subtle but apparent planar fabric elements, which are variable in orientation and are interpreted to represent magmatic flow during emplacement. The Granite Ridge tear fault, which is the northern boundary of the Piney Creek thrust block, is mapped into the Archean core as a mylonite zone. This relationship indicates that the bounding faults of the Piney Creek thrust block were controlled by weak zones within the Precambrian basement rocks.


2020 ◽  
Vol 57 (4) ◽  
pp. 355-373
Author(s):  
Kuwanna Dyer-Pietras

Lacustrine basins are excellent archives of lake evolution, and deposits record the uplift and weathering histories of the surrounding terrain. The application of Sr isotopes has been tested in several lacustrine basins, both modern and ancient, based on the premise that lakes are well mixed, and shifting Sr isotopes may suggest changes in lake provenance. In the Eocene lacustrine Green River Formation in the Piceance Creek Basin of Colorado, Sr isotope analysis of carbonate mudstones indicates that radiogenic Sr in the center of the Piceance lake decreased during the evolution of the lake, from 52.8–48.4 Ma. Because deposition in the basin center occurred away from the influence of episodic alluvial inflow at the basin margin, Sr isotope evolution in the Piceance lake after basin closure is recorded in the John Savage #24-1 core deposits, not the Anvil Points deposits. Sr isotope analysis of carbonate mudstones at Anvil Points below 55 m shows fluctuating radiogenic Sr values that record episodic inflow from the White River Uplift. This inflow is responsible for the difference in radiogenic Sr trends recorded between the basin center and margin. Above 55 m, fluctuating Sr isotope values at Anvil Points record episodic inflow from the White River Uplift, without inflow of Paleozoic and Mesozoic carbonates. The boundary at 55 m records the hydrologic closure of the Uinta and Piceance lakes around 52 Ma, when lake level lowered beneath the basin sill and the lakes were no longer connected across the Douglas Creek Arch. A significant increase in radiogenic Sr across the 55-m-boundary records this transition from open to closed hydrology, reflecting a loss of dissolved Sr sourced from Paleozoic and Mesozoic carbonates.


2020 ◽  
Vol 57 (3) ◽  
pp. 241-270
Author(s):  
Kyle L. Schusler ◽  
David M. Pearson ◽  
Michael McCurry ◽  
Roy C. Bartholomay ◽  
Mark H. Anders

The eastern Snake River Plain (ESRP) is a northeast-trending topographic basin interpreted to be the result of the time-transgressive track of the North American plate above the Yellowstone hotspot. The track is defined by the age progression of silicic volcanic rocks exposed along the margins of the ESRP. However, the bulk of these silicic rocks are buried under 1 to 3 kilometers of younger basalts. Here, silicic volcanic rocks recovered from boreholes that penetrate below the basalts, including INEL-1, WO-2 and new deep borehole USGS-142, are correlated with one another and to surface exposures to assess various models for ESRP subsidence. These correlations are established on U/Pb zircon and 40Ar/39Ar sanidine age determinations, phenocryst assemblages, major and trace element geochemistry, δ18O isotopic data from selected phenocrysts, and initial εHf values of zircon. These data suggest a correlation of: (1) the newly documented 8.1 ± 0.2 Ma rhyolite of Butte Quarry (sample 17KS03), exposed near Arco, Idaho to the upper-most Picabo volcanic field rhyolites found in borehole INEL-1; (2) the 6.73 ± 0.02 Ma East Arco Hills rhyolite (sample 16KS02) to the Blacktail Creek Tuff, which was also encountered at the bottom of borehole WO-2; and (3) the 6.42 ± 0.07 Ma rhyolite of borehole USGS-142 to the Walcott Tuff B encountered in deep borehole WO-2. These results show that rhyolites found along the western margin of the ESRP dip ~20º south-southeast toward the basin axis, and then gradually tilt less steeply in the subsurface as the axis is approached. This subsurface pattern of tilting is consistent with a previously proposed crustal flexural model of subsidence based only on surface exposures, but is inconsistent with subsidence models that require accommodation of ESRP subsidence on either a major normal fault or strike-slip fault.


Sign in / Sign up

Export Citation Format

Share Document