Estimation of eddy-current loss in permanent magnets of electric motors using network-field coupled multislice time-stepping finite-element method

2002 ◽  
Vol 38 (2) ◽  
pp. 1225-1228 ◽  
Author(s):  
W.N. Fu ◽  
Z.J. Liu
2013 ◽  
Vol 310 ◽  
pp. 262-265
Author(s):  
Xiao Peng Wu ◽  
Cheng Ning Zhang ◽  
Yu Gang Dong

The 2-D time-stepping finite element method is adopted to systematically analyze the effect of DC supply voltage of inverter on eddy current loss in permanent magnet of PMSM for EV application. The finite element model and inverter model are built to calculate the winding currents, eddy current losses in permanent magnet and air-gap flux densities with different DC supply voltages when the motor runs in flux-weakening area. Analysis shows that, the eddy current increases significantly with the increase of DC supply voltage, although the fundamental winding current decreases. The temperature-rise experiment of permanent magnet is carried out, proving the validity of analysis.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 157-163
Author(s):  
Koki Ito ◽  
Takahisa Kadomatsu ◽  
Kohei Obana ◽  
Kenji Nakamura

This paper deals with development of in-wheel magnetic-geared motor for walking support machines. In a previous paper, a magnetic-geared motor for a walking support machine was prototyped. However, its efficiency was low, therefore improving the efficiency is necessary for practical use. This paper presents the improving efficiency of the magnetic-geared motor from the viewpoint of torque increasing and loss reducing by using a three-dimensional finite element method (3D-FEM). In addition, supporting method of pole-pieces and eddy current loss in housing were discussed. Furthermore, the proposed motor is prototyped. The experimental results show that its efficiency is 15% higher than the previous motor. Finally, the walking support machine installed with two magnetic-geared motors is prototyped and demonstrated.


Sign in / Sign up

Export Citation Format

Share Document