3d fem
Recently Published Documents


TOTAL DOCUMENTS

779
(FIVE YEARS 155)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
ZHENGSHAN ZHAO ◽  
WENJUAN YAO ◽  
JIAKUN WANG ◽  
LEI ZHOU ◽  
XINSHENG HUANG

It is difficult to measure the cochlea directly because of the ethical problems and the complexity of cochlear structure. Therefore, finite element model (FEM) can be used as an effective alternative research method. An accurate FEM of the human ear can not only help people understand the mechanisms of sound transmission, but also effectively assess the effects of otologic diseases and guide research on the treatment of hearing loss. In this paper, a three-dimensional (3D) FEM of the human normal cochlea is proposed to study the changes in the biomechanical behavior of the cochlear sensory structure caused by the anterior fissure sclerosis and bottom-turn and apex-turn ossification of the cochlear window. The degree and harm of hearing loss caused by diseases are quantitatively predicted, which can deepen the understanding of the biomechanical mechanism of cochlea, and provide theoretical basis for clinical medicine.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 134
Author(s):  
Senbiao Xi ◽  
Yifeng Zhong ◽  
Zheng Shi ◽  
Qingshan Yi

To solve the microstructure-related complexity of a three-dimensional textile composite, a novel equivalent model was established based on the variational asymptotic method. The constitutive modeling of 3D unit cell within the plate was performed to obtain the equivalent stiffness, which can be inputted into the 2D equivalent model (2D-EPM) to perform the bending, free-vibration and buckling analysis. The correctness and effectiveness of the 2D-EPM was validated by comparing with the results from 3D FE model (3D-FEM) under various conditions. The influence of yarn width and spacing on the equivalent stiffness was also discussed. Finally, the effective performances of 3D textile composite plate and 2D plain-woven laminate with the same thickness and yarn content were compared. The results revealed that the bending, buckling and free-vibration behaviors predicted by 2D-EPM were in good agreement with 3D-FEM, and the local field distributions within the unit cell of 3D textile composite plate were well captured. Compared with the 2D plain-woven laminate, the displacement of 3D textile composite plate was relatively larger under the uniform load, which may due to the fact that the through-the-thickness constrains of the former are only dependent on the binder yarns, while the warp yarns and weft yarns of the latter are intertwined closely.


UKaRsT ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 252
Author(s):  
Wellyanto Wijaya ◽  
Paulus Pramono Rahardjo ◽  
Aswin Lim

Cisumdawu Tunnel is a twin tunnel 472 m long located in Sumedang. Twin tunnel construction can cause additional ground settlement and tunnel deformation. The tunnel construction method used is the New Austrian Tunneling Method (NATM) and umbrella grouting protection system. The principle of NATM is to maximize surrounding soil capacity to support its weight and balance the stresses around the tunnel. Investigation of tunnel deformation is important to know tunnel structure behavior and avoid possible failure. This research aims to know tunnel deformation and the effect of twin tunnel construction on the deformation and ground settlement. The data used such as tunnel geometry, monitoring data, pressuremeter test, and the drilling test. The 3D analysis will be performed for a single tunnel and twin tunnel using Midas GTS-NX, and monitoring data will be used for verification analysis. The 3D FEM help to model the soil condition and construction stage according to the actual condition. The analysis results show the maximum tunnel deformation that occurs from the beginning of the tunnel construction is 12.64cm. If the deformation starts to be calculated following the monitoring reading time, after the excavation at the monitoring point, the maximum deformation of the analysis results is 3.3&4.4cm, where the monitoring shows maximum deformation of 3.3&4.3cm. Through the results, it can be said that the analysis using 3D FEM with pressuremeter test parameter represents actual conditions. Twin tunnel construction side-by-side increases ground settlement and lateral tunnel deformation significantly. Hence, it shows that tunnel analysis using 3D FEM recommends for future investigation of tunnel deformation.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1505
Author(s):  
Jittraporn Wongsa-Ngam ◽  
Nitikorn Noraphaiphipaksa ◽  
Chaosuan Kanchanomai ◽  
Terence G. Langdon

A three-dimensional finite element method (3D FEM) simulation was carried out using ABAQUS/Explicit software to simulate multi-pass processing by equal-channel angular pressing (ECAP) of a circular cross-sectional workpiece of a Cu-Zr alloy. The effective plastic strain distribution, the strain homogeneity and the occurrence of a steady-state zone in the workpiece were investigated during ECAP processing for up to eight passes. The simulation results show that a strain inhomogeneity was developed in ECAP after one pass due to the formation of a corner gap in the outer corner of the die. The calculations show that the average effective plastic strain and the degree of homogeneity both increase with the number of ECAP passes. Based on the coefficient of variance, a steady-state zone was identified in the middle section of the ECAP workpiece, and this was numerically evaluated as extending over a length of approximately 40 mm along the longitudinal axis for the Cu-Zr alloy.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7940
Author(s):  
Adam Mańka ◽  
Andrzej Hełka ◽  
Janusz Ćwiek

This article presents the methodology, description, and results of experimental studies aimed at determining the impact of the copper concentration in a carbon–metal composite contact strip on the maximum temperature of the copper contact wire during a contact event when used for operation in the railway industry in Europe. Based on these tests, we determined the minimum percentage of copper that is required for the composite to meet the normative requirements for current loads. In addition to experimental research, a 3D FEM numerical model was also developed in which the contact strip and contact wire geometry were mapped, along with imposed loads resulting from the test for current loads mentioned above. Fifteen simulation variants were carried out for the established model, where the value of the thermal conductivity coefficient and the specific heat coefficient were varied. On this basis, we analyzed the sensitivity of thermal coefficients to the contact wire temperature and determined the minimum conductivity coefficient value, which allowed the maximum copper contact wire temperature of 120 °C to be obtained during the verification tests.


Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 305
Author(s):  
Umut Yusuf Gündoğar ◽  
Sibel Zorlu Zorlu Partal

In recent years, large tilt angles, uniform magnetic flux distributions, strong forces, and large torques for motors have increasingly become important for robotics, biomedical, and automotive applications that have multi-degrees of freedom (MDOFs) motion. Generally, one-degree of-freedom motors are applied in MDOF motion. These situations cause the systems to have very complex and large structures. In order to address these issues, a 2-DOF surface permanent magnet spherical motor with a new mechanical design for the movement of the rotor with a large tilt angle of ±45° was designed, simulated, produced and tested in this paper. The motor consisted of a 4-pole permanent magnet rotor and a 3-block stator with 18 coils. In this study, the mechanical structure of the proposed spherical permanent magnet motor surrounded the rotor with two moving parts to move at a large tilt angle of ±45° without using any mechanical components such as spherical bearings, joint bearings, and bearing covers. Thus, the tilt angle, force, and torque values of the proposed motor have been improved according to MDOF motion motors using spherical bearings, bearing covers, or joint bearings in their mechanical structures in the literature. Ansys Maxwell software was used for the design and simulation of the motor. Three-dimensional (3D) finite element method (FEM) analysis and experimental studies were carried out on the force, torque, and magnetic flux density distribution of the motor. Then, simulation results and experimental results were compared to validate the 3D FEM simulations results.


2021 ◽  
Author(s):  
Lei Zhang ◽  
Xiaofang Ma ◽  
Heng Zhao ◽  
Lei Zheng ◽  
Shouxun Ma

As the gate pier bracket of an arch dam are of complex structure which is characterized by use of high-grade concrete and more cement, higher adiabatic temperature rise, it is rather difficult to control temperature and vulnerable for cracking, and the cracks would absolutely affect the integrity, endurance and safety of pier gate bracket. It is necessary to take reasonable temperature control measures to reduce temperature stress during the construction and prevent cracking. This paper takes the gate pier bracket at the middle-hole dam section to perform simulation analysis of temperature field and stress field under different temperature control measures by 3D FEM. It proves that such measures as densifying water pipes, improving Phase I target cooling temperature appropriately, reducing Phase I cooling temperature falling variation and keeping insulation in low-temperature season can help reduce temperature stress and prevent cracking with good results.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6959
Author(s):  
Piotr Pluciński ◽  
Jan Jaśkowiec ◽  
Maciej Wójtowicz

The paper presents effective numerical modelling of multi-layered plates with orthotropic properties. The method called the FEM23 is employed to construct the numerical model. The approach enables a full 3D analysis to be performed while using a 2D finite element mesh. The numerical model for a multi-layered plate is constructed by an assembling procedure, where each layer with orthotropic properties is added to the global numerical model. The paper demonstrates that the FEM23 method is very flexible in defining the multilayered plate, where the thickness of each layer as well as its mechanical orthotropic properties can be defined independently. Several examples of three-layered or nine-layered plates are analyzed in this paper. The results obtained by the FEM23 method coincide with the ones taken from the published papers or calculated with the standard 3D FEM approach. The orthotropic version of the FEM23 can be quite easily applied for other kinds of problems including thermo-mechanics, free vibrations, buckling analysis, or delamination.


Sign in / Sign up

Export Citation Format

Share Document