Terrain-aware rollover prediction for ground vehicles using the zero-moment point method

Author(s):  
Sittikorn Lapapong ◽  
Sean N Brennan
2016 ◽  
Vol 851 ◽  
pp. 497-502
Author(s):  
Si Yu Xia ◽  
Qiang Zhan ◽  
Ahmed Rahmani

Motion stability is the most important issue to be considered when designing a wheeled humanoid robot with bending torso, as it’s easy to capsize because of its high center of gravity. With ZMP (Zero Moment Point) method the motion stability of a wheeled humanoid robot with bending torso was analyzed. At first, the chain rule was used to model the kinematics of the wheeled humanoid robot, and then the process of calculating the ZMP of the robot was presented. With MATLAB the motion stability of the humanoid robot in three typical conditions is simulated and analyzed, and the simulation results were used to optimize some parameters of a wheeled humanoid robot we are designing.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3588 ◽  
Author(s):  
Portilla ◽  
Saltarén ◽  
Espinosa ◽  
Barroso ◽  
Cely ◽  
...  

In this research, the dynamic walking of a legged robot in underwater environments is proposed. For this goal, the underwater zero moment point (Uzmp) is proposed in order to generate the trajectory of the centre of the mass of the robot. Also, the underwater zero moment point auxiliary (Uzmp aux.) is employed to stabilize the balance of the robot before it undergoes any external perturbations. The concept demonstration of a legged robot with hydraulic actuators is developed. Moreover, the control that was used is described and the hydrodynamic variables of the robot are determined. The results demonstrate the validity of the concepts that are proposed in this article, and the dynamic walking of the legged robot in an underwater environment is successfully demonstrated.


Sign in / Sign up

Export Citation Format

Share Document