zero moment point
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Guang Xia ◽  
Jiacheng Li ◽  
Xiwen Tang ◽  
Yang Zhang ◽  
Linfeng Zhao

2021 ◽  
Vol 18 (2) ◽  
pp. 172988142110043
Author(s):  
Lu Zhiqiang ◽  
Hou Yuanbing ◽  
Chai Xiuli ◽  
Meng Yun

In this article, an energy-efficient gait planning algorithm that utilizes both 3D body motion and an allowable zero moment point region (AZR) is presented for biped robots based on a five-mass inverted pendulum model. The product of the load torque and angular velocity of all joint motors is used as an energy index function (EIF) to evaluate the energy consumption during walking. The algorithm takes the coefficients of the finite-order Fourier series to represent the motion space of the robot body centroid, and the motion space is gridded by discretizing these coefficients. Based on the geometric structure of the leg joints, an inverse kinematics method for calculating grid intersection points is designed. Of the points that satisfy the AZR constraints, the point with the lowest EIF value in each network line is selected as the seed. In the neighborhood of the seed, the point with the minimum EIF value in the motion space is successively approximated by the gradient descent method, and the corresponding joint angle sequence is stored in the database. Given a distance to be traveled, our algorithm plans a complete walking trajectory, including two starting steps, multiple cyclic steps, and two stopping steps, while minimizing the energy consumption. According to the preset AZR, the joint angle sequences of the robot are read from the database, and these sequences are adjusted for each step according to the zero-moment-point feedback during walking. To determine the effectiveness of the proposed algorithm, both dynamic simulation and walking experiment in the real environment were carried out. The experimental results show that compared with algorithms based on the fixed body height or vertical body motion, our gait algorithm has a significant energy-saving effect.


2020 ◽  
Vol 24 (06) ◽  
pp. 68-82
Author(s):  
Ali Fawzi Abdul Kareem ◽  
◽  
Ahmed Abdul Hussein Ali ◽  

In this paper, the optimal control is analyzed to compare the results of the zero moment point of a bipedal walking robot. Seventeen degrees of freedom bipedal walking robot is manufactured of hard Aluminum sheets. The zero moment point is calculated experimentally and theoretically in the single support phase. MATLAB Simulink is used to simulate the results. The experimental results showed that the lower link takes the settling time is (1) sec, the middle link takes settling time (0.9) sec and the upper link takes (1.1) sec to arrive the desired zero moment point for the bipedal walking robot. The minimum performance index in the experimental parts occurs when the optimal feedback control gain is [35.5 30.4 5 -4]. Hence, the minimum performance index in the theoretical part is [35 31 5.2 -4]. The dimensions of the foot area are (12.3cm×6.3cm), 2.3cm thickness, and 32g weight. Also, the approximate balance area in the double support phase equals the area between the feet of the robot


2020 ◽  
Vol 10 (11) ◽  
pp. 3992
Author(s):  
Muhammad Usman ◽  
Muhammad Sajid ◽  
Emad Uddin ◽  
Yasar Ayaz

Liquid-handling robots are designed to dispense sub-microliter quantities of fluids for applications including laboratory tests. When larger amounts of liquids are involved, sloshing must be considered as a parameter affecting stability, which is of significance for autonomous vehicles. The measurement and quantification of slosh in enclosed volumes poses a challenge to researchers who have traditionally resorted to tracking the air–liquid interface for two-phase flow analysis. There is a need for a simpler method to predict rollover in these applications. In this work, a novel solution to address this problem is proposed in the form of the Zero Moment Point (ZMP) of a dynamic liquid region. Computational experiments of a partially filled, two-dimensional liquid vessel were carried out using the Volume of Fluid (VOF) method in a finite volume based open-source computational fluid dynamics solver. The movement of the air–liquid interface was tracked, while the Center of Mass and the resulting Zero Moment Point were determined from the numerical simulations at each time step. The computational model was validated by comparing the wall pressure and movement of the liquid-free surface to experimentally obtained values. It was concluded that for a dynamic liquid domain, the Zero Moment Point can be instrumental in determining the stability of partially filled containers subjected to sloshing.


2019 ◽  
Vol 6 ◽  
pp. 83-94
Author(s):  
Jesus E. Fierro P. ◽  
J. Alfonso Pamanes G. ◽  
Victor De-Leon-Gomez

The commercial Nao humanoid robot has 11 DOF in legs. Even if these legs include 12 revolute joints, only 11 actuators are employed to control the walking of the robot. Under such conditions, the mobility of the pelvis and that of the oscillating foot are mutually constrained at each step. Besides, the original gait provided by the manufacturer company of the Nao employs only single support phases during the walking. Because of both issues, the reduced mobility in legs and the use of only single support phases, the stability of the walking is affected. To contribute to improving such stability, in this paper an approach is proposed that incorporates a double support phase and a gait based on cycloidal time functions for motions of the pelvis and those of the oscillating foot. To assess the stability of the walking an index is applied, which is based on the notion of zero-moment point (ZMP) of the static foot at each step. Results of experimental tests show that the proposed gait enhances the stability of the robot during the walking.


Sign in / Sign up

Export Citation Format

Share Document