scholarly journals Worst-Case Latency Analysis for IEEE 802.1Qbv Time Sensitive Networks Using Network Calculus

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 41803-41815 ◽  
Author(s):  
Luxi Zhao ◽  
Paul Pop ◽  
Silviu S. Craciunas
2021 ◽  
Vol 11 (9) ◽  
pp. 3896
Author(s):  
Khaled M. Shalghum ◽  
Nor Kamariah Noordin ◽  
Aduwati Sali ◽  
Fazirulhisyam Hashim

Deterministic latency is an urgent demand to pursue the continuous increase in intelligence in several real-time applications, such as connected vehicles and automation industries. A time-sensitive network (TSN) is a new framework introduced to serve these applications. Several functions are defined in the TSN standard to support time-triggered (TT) requirements, such as IEEE 802.1Qbv and IEEE 802.1Qbu for traffic scheduling and preemption mechanisms, respectively. However, implementing strict timing constraints to support scheduled traffic can miss the needs of unscheduled real-time flows. Accordingly, more relaxed scheduling algorithms are required. In this paper, we introduce the flexible window-overlapping scheduling (FWOS) algorithm that optimizes the overlapping among TT windows by three different metrics: the priority of overlapping, the position of overlapping, and the overlapping ratio (OR). An analytical model for the worst-case end-to-end delay (WCD) is derived using the network calculus (NC) approach considering the relative relationships between window offsets for consecutive nodes and evaluated under a realistic vehicle use case. While guaranteeing latency deadline for TT traffic, the FWOS algorithm defines the maximum allowable OR that maximizes the bandwidth available for unscheduled transmission. Even under a non-overlapping scenario, less pessimistic latency bounds have been obtained using FWOS than the latest related works.


2011 ◽  
Vol 8 (3) ◽  
pp. 890-908
Author(s):  
Ke Xiong ◽  
Yu Zhang ◽  
Shenghui Wang ◽  
Zhifei Zhang ◽  
Zhengding Qiu

Network performance bounds, including the maximal end-toend (E2E) delay, the maximal jitter and the maximal buffer backlog amount, are very important for network QoS control, buffer management and network optimization. QoS-enhanced To Next-hop Port Sequence Switch (QTNPOSS) is a recently proposed transmission scheme to achieve scalable fast forwarding for multimedia applications. However, the existing E2E delay bound of QTNPOSS network is not tight. To this end, this paper presents a lower E2E delay bound for QTNPOSS networks by using the network calculus theory, where the inherent properties (e.g. packet length and peak rate) of the flow are taken into account. Besides, the buffer size bound and the jitter bound of QTNPOSS network are also presented. Moreover, by extensive numerical experiments, we discuss the influences of the Long Range Dependence (LDR) traffic property and the Weighted Fair Queuing (WFQ) weight on the proposed network performance bounds. The results show that the WFQ weight influences the bounds more greatly than the LRD property.


Sign in / Sign up

Export Citation Format

Share Document