scholarly journals Design and Analysis of a Novel Time- and Energy-Efficient $M$ -Ary Tree Protocol With Collision Window for Dense RFID Systems

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 58549-58563
Author(s):  
Linh T. Hoang ◽  
Anh T. Pham ◽  
Chuyen T. Nguyen
2008 ◽  
Vol 55 (1) ◽  
pp. 36-48 ◽  
Author(s):  
Monique Chyba ◽  
Thomas Haberkorn ◽  
Ryan N. Smith ◽  
Song K. Choi ◽  

2015 ◽  
Vol 319 ◽  
pp. 92-112 ◽  
Author(s):  
Dawei Sun ◽  
Guangyan Zhang ◽  
Songlin Yang ◽  
Weimin Zheng ◽  
Samee U. Khan ◽  
...  

2015 ◽  
Vol 4 (1) ◽  
pp. 20-24 ◽  
Author(s):  
M. Djaeni ◽  
N. Asiah ◽  
S Suherman ◽  
A. Sutanto ◽  
A. Nurhasanah

Energy usage is crucial aspect on agriculture drying process. This step spends about 70% of total energy in post harvest treatment. The design of efficient dryer with renewable energy source is urgently required due to the limitation of fossil fuel energy. This work discusses the performance of air dehumidification using rice husk fuel as heat source for onion, and paddy drying. Unlike conventional dryer, the humidity of air during the drying was dehumidified by adsorbent. Hence, the driving force of drying can be  kept high.  As consequences, the drying time and energy usage can be reduced. Here, the research was conducted in two step: laboratory and pilot scale tests. Results showed that the lowering air humidity with rice husk fuel has improved the energy efficiency. At operational temperature 60oC, the heat efficiency of 75%  was achieved. 


2019 ◽  
pp. 155-168
Author(s):  
Murukesan Loganathan ◽  
Thennarasan Sabapathy ◽  
Mohamed Elobaid Elshaikh ◽  
Mohamed Nasrun Osman ◽  
Rosemizi Abd Rahim ◽  
...  

Efficient collision arbitration protocol facilitates fast tag identification in radio frequency identification (RFID) systems. EPCGlobal-Class1-Generation2 (EPC-C1G2) protocol is the current standard for collision arbitration in commercial RFID systems. However, the main drawback of this protocol is that it requires excessive message exchanges between tags and the reader for its operation. This wastes energy of the already resource-constrained RFID readers. Hence, in this work, reinforcement learning based anti-collision protocol (RL-DFSA) is proposed to address the energy efficient collision arbitration problem in the RFID system. The proposed algorithm continuously learns and adapts to the changes in the environment by devising an optimal policy. The proposed RL-DFSA was evaluated through extensive simulations and compared with the variants of EPC-C1G2 algorithms that are currently being used in the commercial readers. Based on the results, it is concluded that RL-DFSA performs equal or better than EPC-C1G2 protocol in delay, throughput and time system efficiency when simulated for sparse and dense environments while requiring one order of magnitude lesser control message exchanges between the reader and the tags.


Sign in / Sign up

Export Citation Format

Share Document