scholarly journals Actionable Knowledge Discovery for Increasing Enterprise Profit, Using Domain Driven-Data Mining

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 182924-182936
Author(s):  
Rakhi Batra ◽  
M. Abdul Rehman
Author(s):  
Iman Barazandeh ◽  
Mohammad Reza Gholamian

The healthcare industry is one of the most attractive domains to realize the actionable knowledge discovery objectives. This chapter studies recent researches on knowledge discovery and data mining applications in the healthcare industry and proposes a new classification of these applications. Studies show that knowledge discovery and data mining applications in the healthcare industry can be classified to three major classes, namely patient view, market view, and system view. Patient view includes papers that performed pure data mining on healthcare industry data. Market view includes papers that saw the patients as customers. System view includes papers that developed a decision support system. The goal of this classification is identifying research opportunities and gaps for researchers interested in this context.


Author(s):  
Longbing Cao

Actionable knowledge discovery is selected as one of the greatest challenges (Ankerst, 2002; Fayyad, Shapiro, & Uthurusamy, 2003) of next-generation knowledge discovery in database (KDD) studies (Han & Kamber, 2006). In the existing data mining, often mined patterns are nonactionable to real user needs. To enhance knowledge actionability, domain-related social intelligence is substantially essential (Cao et al., 2006b). The involvement of domain-related social intelligence into data mining leads to domaindriven data mining (Cao & Zhang, 2006a, 2007a), which complements traditional data-centered mining methodology. Domain-related social intelligence consists of intelligence of human, domain, environment, society and cyberspace, which complements data intelligence. The extension of KDD toward domain-driven data mining involves many challenging but promising research and development issues in KDD. Studies in regard to these issues may promote the paradigm shift of KDD from data-centered interesting pattern mining to domain-driven actionable knowledge discovery, and the deployment shift from simulated data set-based to real-life data and business environment-oriented as widely predicted.


2016 ◽  
pp. 1097-1118 ◽  
Author(s):  
Iman Barazandeh ◽  
Mohammad Reza Gholamian

The healthcare industry is one of the most attractive domains to realize the actionable knowledge discovery objectives. This chapter studies recent researches on knowledge discovery and data mining applications in the healthcare industry and proposes a new classification of these applications. Studies show that knowledge discovery and data mining applications in the healthcare industry can be classified to three major classes, namely patient view, market view, and system view. Patient view includes papers that performed pure data mining on healthcare industry data. Market view includes papers that saw the patients as customers. System view includes papers that developed a decision support system. The goal of this classification is identifying research opportunities and gaps for researchers interested in this context.


2018 ◽  
pp. 2161-2182
Author(s):  
Iman Barazandeh ◽  
Mohammad Reza Gholamian

The healthcare industry is one of the most attractive domains to realize the actionable knowledge discovery objectives. This chapter studies recent researches on knowledge discovery and data mining applications in the healthcare industry and proposes a new classification of these applications. Studies show that knowledge discovery and data mining applications in the healthcare industry can be classified to three major classes, namely patient view, market view, and system view. Patient view includes papers that performed pure data mining on healthcare industry data. Market view includes papers that saw the patients as customers. System view includes papers that developed a decision support system. The goal of this classification is identifying research opportunities and gaps for researchers interested in this context.


2008 ◽  
pp. 831-848 ◽  
Author(s):  
Longbing Cao ◽  
Chengqi Zhang

Extant data mining is based on data-driven methodologies. It either views data mining as an autonomous data-driven, trial-and-error process or only analyzes business issues in an isolated, case-by-case manner. As a result, very often the knowledge discovered generally is not interesting to real business needs. Therefore, this article proposes a practical data mining methodology referred to as domain-driven data mining, which targets actionable knowledge discovery in a constrained environment for satisfying user preference. The domain-driven data mining consists of a DDID-PD framework that considers key components such as constraint-based context, integrating domain knowledge, human-machine cooperation, in-depth mining, actionability enhancement, and iterative refinement process. We also illustrate some examples in mining actionable correlations in Australian Stock Exchange, which show that domain-driven data mining has potential to improve further the actionability of patterns for practical use by industry and business.


2013 ◽  
Vol 4 (1) ◽  
pp. 18-27
Author(s):  
Ira Melissa ◽  
Raymond S. Oetama

Data mining adalah analisis atau pengamatan terhadap kumpulan data yang besar dengan tujuan untuk menemukan hubungan tak terduga dan untuk meringkas data dengan cara yang lebih mudah dimengerti dan bermanfaat bagi pemilik data. Data mining merupakan proses inti dalam Knowledge Discovery in Database (KDD). Metode data mining digunakan untuk menganalisis data pembayaran kredit peminjam pembayaran kredit. Berdasarkan pola pembayaran kredit peminjam yang dihasilkan, dapat dilihat parameter-parameter kredit yang memiliki keterkaitan dan paling berpengaruh terhadap pembayaran angsuran kredit. Kata kunci—data mining, outlier, multikolonieritas, Anova


Author(s):  
Gary Smith

We live in an incredible period in history. The Computer Revolution may be even more life-changing than the Industrial Revolution. We can do things with computers that could never be done before, and computers can do things for us that could never be done before. But our love of computers should not cloud our thinking about their limitations. We are told that computers are smarter than humans and that data mining can identify previously unknown truths, or make discoveries that will revolutionize our lives. Our lives may well be changed, but not necessarily for the better. Computers are very good at discovering patterns, but are useless in judging whether the unearthed patterns are sensible because computers do not think the way humans think. We fear that super-intelligent machines will decide to protect themselves by enslaving or eliminating humans. But the real danger is not that computers are smarter than us, but that we think computers are smarter than us and, so, trust computers to make important decisions for us. The AI Delusion explains why we should not be intimidated into thinking that computers are infallible, that data-mining is knowledge discovery, and that black boxes should be trusted.


Sign in / Sign up

Export Citation Format

Share Document