scholarly journals Direction-of-Arrival Estimation of Far-Field Sources Under Near-Field Interferences in Passive Sonar Array

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 28413-28420
Author(s):  
Hojun Lee ◽  
Jongmin Ahn ◽  
Yongcheol Kim ◽  
Jaehak Chung
2015 ◽  
Vol 23 (04) ◽  
pp. 1540007 ◽  
Author(s):  
Guolong Liang ◽  
Wenbin Zhao ◽  
Zhan Fan

Direction of arrival (DOA) estimation is of great interest due to its wide applications in sonar, radar and many other areas. However, the near-field interference is always presented in the received data, which may result in degradation of DOA estimation. An approach which can suppress the near-field interference and preserve the far-field signal desired by using a spatial matrix filter is proposed in this paper and some typical DOA estimation algorithms are adjusted to match the filtered data. Simulation results show that the approach can improve capability of DOA estimation under near-field inference efficiently.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 163
Author(s):  
Longhao Qiu ◽  
Tian Lan ◽  
Yilin Wang

Direction of arrival (DOA) estimation via sensor array is a crucial component of any passive sonar signal processing technology. In certain practical applications, however, the interested far-field targets are frequently affected by near-field interference, which may result in degradation of DOA estimation. Aiming at the direction estimation problems of far-field targets under strong near-field interference, a unified sparse representation model of far-field and near-field hybrid sources is constructed according to the various correlations in steering vectors between the planar wave and spherical wave in this paper. A high-resolution spatial spectrum reconstruction algorithm based on a sparse Bayesian framework is then exploited to constrain the energy of near-field interference in the preset near-field steering vector over-complete dictionary, thus ensuring the accurate detection and estimation of far-field targets. An expectation-maximization (EM) algorithm approach is introduced to estimate the number of sources and noise power iteratively, which will reduce the dependence of the algorithm on such prior information. Several state-of-art algorithms are mentioned and discussed (Minimum Variance Distortionless Response (MVDR) method, Multiple Signal Classification (MUSIC) algorithm and conventional beamforming (CBF) algorithm) to compare with the one proposed in this manuscript that achieves higher accuracy of estimation and resolution under low SNR level with limited samples, which is verified by simulation and for the results obtained in an experimental case study.


Sign in / Sign up

Export Citation Format

Share Document