field direction
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 48)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Takahiro Tsuzuki ◽  
Shuji Ogata ◽  
Ryo Kobayashi ◽  
Masayuki Uranagase ◽  
Seiya Shimoi ◽  
...  

BaTiO3 is one of the well-known ferroelectric and piezoelectric materials, which has been widely used in various devices. However, the microscopic mechanism of the ferroelectric domain growth is not understood well. We investigated the effects of point defects, mono- and di-vacancies of Ba, Ti, and O, on the domain growth of BaTiO3 using molecular dynamics simulation with the core-shell inter-atomic potential. We found the following: s(1) One kind of monovacancy, VO1, located on the TiO plane perpendicular to the applied electric field direction, acts to hinder the polarization inversion induced by the applied electric field. The monopole electric field produced by VO1 either hinders or assists the local polarization inversion in accordance with the local intensity of the total electric field. (2) The 1st-neighbor divacancies VBa-VO and VTi-VO as compared to the 2nd-neighbor divacancies asymmetrically affect the domain growth with respect to the applied electric field, making the hysteresis behavior of applied electric field vs. polarization relation. The domain grows even at a small electric field when the directions of the applied electric field and the divacancy dipole are mutually the same. (3) The domain growth speed towards the applied electric field direction is about 2 orders of magnitude higher than that towards the perpendicular direction.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012096
Author(s):  
V V Guryev ◽  
S V Shavkin ◽  
V S Kruglov

Abstract Various applications of superconducting materials require accounting of the critical current anisotropy relative to magnetic field direction - I c7(θ). However, today there is no sufficiently comprehensive model that takes into account the anisotropy, therefore the angular dependences are usually not analysed, but only described using various mathematical formulas. As a result, the fitting parameters have no physical meaning and it is difficult to correlate the picture with the features of the microstructure. In this paper, we propose a method for analysing the critical current angular dependences based on the anisotropic pinning model. The applicability of this model for conventional superconducting Nb-Ti tapes with one peak in the I c7(θ) dependence is shown. The possibility of extending this model to analyse the angular dependences of HTS materials is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandros Vekris ◽  
Juan Carlos Estrada Saldaña ◽  
Joeri de Bruijckere ◽  
Sara Lorić ◽  
Thomas Kanne ◽  
...  

AbstractLittle–Parks oscillations of a hollow superconducting cylinder are of interest for flux-driven topological superconductivity in single Rashba nanowires. The oscillations are typically symmetric in the orientation of the applied magnetic flux. Using double InAs nanowires coated by an epitaxial superconducting Al shell which, despite the non-centro-symmetric geometry, behaves effectively as one hollow cylinder, we demonstrate that a small misalignment of the applied parallel field with respect to the axis of the nanowires can produce field-asymmetric Little–Parks oscillations. These are revealed by the simultaneous application of a magnetic field perpendicular to the misaligned parallel field direction. The asymmetry occurs in both the destructive regime, in which superconductivity is destroyed for half-integer quanta of flux through the shell, and in the non-destructive regime, where superconductivity is depressed but not fully destroyed at these flux values.


2021 ◽  
Author(s):  
Meng Fu ◽  
Zepeng Zhang ◽  
Rui Jiang ◽  
Hongbao Liu

Magnetic particles can be oriented along the magnetic field direction to achieve orderly arrangement under the magnetic field. Optical functional materials such as photonic crystal and liquid crystal can be obtained according to magnetic induced ordered nanostructure assembly. One-dimensional natural clay minerals with unique structure, composition and properties can be used as structural base to prepare anisotropic magnetic nanoparticles by decorated with magnetic particles, achieving unique optical functional properties. In this chapter, one-dimensional clay minerals@Fe3O4 nanocomposites were prepared by co-precipitation. The resulting one-dimensional clay minerals@Fe3O4 nanocomposites are superparamagnetic. They can be oriented along the direction of the magnetic field and produce an instantaneously reversible response. These magnetic mineral materials can be dispersed in a dilute acid solution to form stable colloid solutions. These stable colloid solutions produce a similar magnetically controlled liquid crystal with Bragg diffraction under an external magnetic field. Their optical properties are affected by magnetic field intensity, magnetic field direction and solid content. The results show that the functionalization of one-dimensional clay minerals has potential applications in display devices, photonic switches and other fields.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3958
Author(s):  
Sanket Chougale ◽  
Dirk Romeis ◽  
Marina Saphiannikova

Magnetoactive elastomers (MAEs) claim a vital place in the class of field-controllable materials due to their tunable stiffness and the ability to change their macroscopic shape in the presence of an external magnetic field. In the present work, three principal geometries of shear deformation were investigated with respect to the applied magnetic field. The physical model that considers dipole-dipole interactions between magnetized particles was used to study the stress-strain behavior of ellipsoidal MAEs. The magneto-rheological effect for different shapes of the MAE sample ranging from disc-like (highly oblate) to rod-like (highly prolate) samples was investigated along and transverse to the field direction. The rotation of the MAE during the shear deformation leads to a non-symmetric Cauchy stress tensor due to a field-induced magnetic torque. We show that the external magnetic field induces a mechanical anisotropy along the field direction by determining the distinct magneto-mechanical behavior of MAEs with respect to the orientation of the magnetic field to shear deformation.


Author(s):  
Victoryia I. Halauchyk ◽  
Michail G. Lukashevich

The Hall resistance hysteresis loops in thin (d = 80 –280 nm) magnetically ordered permalloy films (Ni0.8 Fe0.2) were studied at room temperature at different angles between the film plane and the magnetic field direction (φ = 0 –360°) (extraordinary and ordinary Hall effects), at different angles (θ = 0 – 90°) between the magnetic field direction and the flowing current (planar Hall effect at φ = 0°) in a magnetic field up to B = 1.25 T. The thin films were obtained on sitall dielectric substrate by ion beam sputtering. Sharp peaks of the Hall resistance were observed in the extraordinary and planar Hall effects during the magnetisation reversal of the films due to a change of the magnetisation direction with respect to the sampling current direction. In the extraordinary Hall effect the position and full width at half maximum of a peak is determined by the angle between the magnetic field direction and the film plane. It has been shown that as the direction of the external magnetic field approaches the spontaneous magnetisation direction, both the peak magnetic field position Bp and the full width at half maximum of the peak Δ Bp increase. In the angles range of φ = 0 – 90° Bp and Δ  Bp varies in the magnetic field range from Δ  В ≈ 0.2 to 5.0 mT. A non-monotonic dependence of the planar Hall resistance and its peak position on the angle between the flowing current and the magnetic field direction was detected. It is related to the change of the longitudinal and transverse components the resistance of the magnetically ordered solids by an external magnetic field. The values of the ordinary and extraordinary Hall effects coefficients have been determined: RH0 = 6 ⋅ 10–9 m3/C and RH1 = 3.2 ⋅ 10–8 m3/C, respectively.


Sign in / Sign up

Export Citation Format

Share Document