scholarly journals Emotional deep learning programming controller for automatic voltage control of power systems

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Linfei Yin ◽  
Chenwei Zhang ◽  
Yaoxiong Wang ◽  
Fang Gao ◽  
Jun Yu ◽  
...  
2020 ◽  
Vol 34 (01) ◽  
pp. 630-637 ◽  
Author(s):  
Ferdinando Fioretto ◽  
Terrence W.K. Mak ◽  
Pascal Van Hentenryck

The Optimal Power Flow (OPF) problem is a fundamental building block for the optimization of electrical power systems. It is nonlinear and nonconvex and computes the generator setpoints for power and voltage, given a set of load demands. It is often solved repeatedly under various conditions, either in real-time or in large-scale studies. This need is further exacerbated by the increasing stochasticity of power systems due to renewable energy sources in front and behind the meter. To address these challenges, this paper presents a deep learning approach to the OPF. The learning model exploits the information available in the similar states of the system (which is commonly available in practical applications), as well as a dual Lagrangian method to satisfy the physical and engineering constraints present in the OPF. The proposed model is evaluated on a large collection of realistic medium-sized power systems. The experimental results show that its predictions are highly accurate with average errors as low as 0.2%. Additionally, the proposed approach is shown to improve the accuracy of the widely adopted linear DC approximation by at least two orders of magnitude.


1991 ◽  
Vol 11 (2) ◽  
pp. 49
Author(s):  
A. Stankovic ◽  
M. Ilic ◽  
D. Maratukulam

Author(s):  
Diego de S. de Oliveira ◽  
Gustavo Cezimbra B. Leal ◽  
João Adolpho V. da Costa ◽  
Emanuel L. van Emmerik ◽  
Fábio A. L. Alves ◽  
...  

2019 ◽  
Vol 9 (20) ◽  
pp. 4417 ◽  
Author(s):  
Sana Mujeeb ◽  
Turki Ali Alghamdi ◽  
Sameeh Ullah ◽  
Aisha Fatima ◽  
Nadeem Javaid ◽  
...  

Recently, power systems are facing the challenges of growing power demand, depleting fossil fuel and aggravating environmental pollution (caused by carbon emission from fossil fuel based power generation). The incorporation of alternative low carbon energy generation, i.e., Renewable Energy Sources (RESs), becomes crucial for energy systems. Effective Demand Side Management (DSM) and RES incorporation enable power systems to maintain demand, supply balance and optimize energy in an environmentally friendly manner. The wind power is a popular energy source because of its environmental and economical benefits. However, the uncertainty of wind power makes its incorporation in energy systems really difficult. To mitigate the risk of demand-supply imbalance, an accurate estimation of wind power is essential. Recognizing this challenging task, an efficient deep learning based prediction model is proposed for wind power forecasting. The proposed model has two stages. In the first stage, Wavelet Packet Transform (WPT) is used to decompose the past wind power signals. Other than decomposed signals and lagged wind power, multiple exogenous inputs (such as, calendar variable and Numerical Weather Prediction (NWP)) are also used as input to forecast wind power. In the second stage, a new prediction model, Efficient Deep Convolution Neural Network (EDCNN), is employed to forecast wind power. A DSM scheme is formulated based on forecasted wind power, day-ahead demand and price. The proposed forecasting model’s performance was evaluated on big data of Maine wind farm ISO NE, USA.


2021 ◽  
Author(s):  
Georgios Tsaousoglou ◽  
Katerina Mitropoulou ◽  
Konstantinos Steriotis ◽  
Nikolaos Paterakis ◽  
Pierre Pinson ◽  
...  

<div>In modern power systems, small distributed energy resources (DERs) are considered a valuable source of flexibility towards accommodating high penetration of Renewable Energy Sources (RES). In this paper we consider an economic dispatch problem for a community of DERs, where energy management decisions are made online and under uncertainty. We model multiple sources of uncertainty such as RES, wholesale electricity prices as well as the arrival times and energy needs of a set of Electric Vehicles. The economic dispatch problem is formulated as a multi-agent Markov Decision Process. The difficulties lie in the curse of dimensionality and in guaranteeing the satisfaction of constraints under uncertainty.</div><div>A novel method, that combines duality theory and deep learning, is proposed to tackle these challenges. In particular, a Neural Network (NN) is trained to return the optimal dual variables of the economic dispatch problem. By training the NN on the dual problem instead of the primal, the number of output neurons is dramatically reduced, which enhances the performance and reliability of the NN. Finally, by treating the resulting dual variables as prices, each distributed agent can self-schedule, which guarantees the satisfaction of its constraints. As a result, our simulations show that the proposed scheme performs reliably and efficiently.</div>


Sign in / Sign up

Export Citation Format

Share Document