dual variables
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 20)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Luciano Costa ◽  
Claudio Contardo ◽  
Guy Desaulniers ◽  
Julian Yarkony

Column generation (CG) algorithms are well known to suffer from convergence issues due, mainly, to the degenerate structure of their master problem and the instability associated with the dual variables involved in the process. In the literature, several strategies have been proposed to overcome this issue. These techniques rely either on the modification of the standard CG algorithm or on some prior information about the set of dual optimal solutions. In this paper, we propose a new stabilization framework, which relies on the dynamic generation of aggregated rows from the CG master problem. To evaluate the performance of our method and its flexibility, we consider instances of three different problems, namely, vehicle routing with time windows (VRPTW), bin packing with conflicts (BPPC), and multiperson pose estimation (MPPEP). When solving the VRPTW, the proposed stabilized CG method yields significant improvements in terms of CPU time and number of iterations with respect to a standard CG algorithm. Huge reductions in CPU time are also achieved when solving the BPPC and the MPPEP. For the latter, our method has shown to be competitive when compared with a tailored method. Summary of Contribution: Column generation (CG) algorithms are among the most important and studied solution methods in operations research. CG algorithms are suitable to cope with large-scale problems arising from several real-life applications. The present paper proposes a generic stabilization framework to address two of the main issues found in a CG method: degeneracy in the master problem and massive instability of the dual variables. The newly devised method, called dynamic separation of aggregated rows (dyn-SAR), relies on an extended master problem that contains redundant constraints obtained by aggregating constraints from the original master problem formulation. This new formulation is solved in a column/row generation fashion. The efficacy of the proposed method is tested through an extensive experimental campaign, where we solve three different problems that differ considerably in terms of their constraints and objective function. Despite being a generic framework, dyn-SAR requires the embedded CG algorithm to be tailored to the application at hand.


2021 ◽  
Vol Volume 2 (Original research articles) ◽  
Author(s):  
Antonio Silveti-Falls ◽  
Cesare Molinari ◽  
Jalal Fadili

In this paper we propose and analyze inexact and stochastic versions of the CGALP algorithm developed in [25], which we denote ICGALP , that allow for errors in the computation of several important quantities. In particular this allows one to compute some gradients, proximal terms, and/or linear minimization oracles in an inexact fashion that facilitates the practical application of the algorithm to computationally intensive settings, e.g., in high (or possibly infinite) dimensional Hilbert spaces commonly found in machine learning problems. The algorithm is able to solve composite minimization problems involving the sum of three convex proper lower-semicontinuous functions subject to an affine constraint of the form Ax = b for some bounded linear operator A. Only one of the functions in the objective is assumed to be differentiable, the other two are assumed to have an accessible proximal operator and a linear minimization oracle. As main results, we show convergence of the Lagrangian values (so-called convergence in the Bregman sense) and asymptotic feasibility of the affine constraint as well as strong convergence of the sequence of dual variables to a solution of the dual problem, in an almost sure sense. Almost sure convergence rates are given for the Lagrangian values and the feasibility gap for the ergodic primal variables. Rates in expectation are given for the Lagrangian values and the feasibility gap subsequentially in the pointwise sense. Numerical experiments verifying the predicted rates of convergence are shown as well.


2021 ◽  
Author(s):  
Zain Ali ◽  
Wali Ullah Khan ◽  
Asim Ihsan ◽  
Omer Waqar ◽  
Guftaar Ahmad Sardar Sidhu ◽  
...  

This paper proposes a new optimization framework for NOMA-enabled cooperative vehicular network. In particular, we jointly optimize the vehicle paring, channel assignment, and power allocation at source and relaying vehicles. The objective is to maximize the sum rate of the system subject to the power allocation, minimum rate, relay battery lifetime and successive interference cancellation constraints. To solve the joint optimization problem efficiently, we adopt dual theory followed by Karush-Kuhn-Tucker (KKT) conditions, where the dual variables are iteratively computed through sub-gradient method. Two less complex suboptimal optimization schemes are also presented as the benchmark cooperative vehicular schemes.


2021 ◽  
Author(s):  
Zain Ali ◽  
Wali Ullah Khan ◽  
Asim Ihsan ◽  
Omer Waqar ◽  
Guftaar Ahmad Sardar Sidhu ◽  
...  

This paper proposes a new optimization framework for NOMA-enabled cooperative vehicular network. In particular, we jointly optimize the vehicle paring, channel assignment, and power allocation at source and relaying vehicles. The objective is to maximize the sum rate of the system subject to the power allocation, minimum rate, relay battery lifetime and successive interference cancellation constraints. To solve the joint optimization problem efficiently, we adopt dual theory followed by Karush-Kuhn-Tucker (KKT) conditions, where the dual variables are iteratively computed through sub-gradient method. Two less complex suboptimal optimization schemes are also presented as the benchmark cooperative vehicular schemes.


2021 ◽  
Vol 47 (2) ◽  
pp. 1-27
Author(s):  
Stefan Guthe ◽  
Daniel Thuerck

We present a new algorithm for solving the dense linear (sum) assignment problem and an efficient, parallel implementation that is based on the successive shortest path algorithm. More specifically, we introduce the well-known epsilon scaling approach used in the Auction algorithm to approximate the dual variables of the successive shortest path algorithm prior to solving the assignment problem to limit the complexity of the path search. This improves the runtime by several orders of magnitude for hard-to-solve real-world problems, making the runtime virtually independent of how hard the assignment is to find. In addition, our approach allows for using accelerators and/or external compute resources to calculate individual rows of the cost matrix. This enables us to solve problems that are larger than what has been reported in the past, including the ability to efficiently solve problems whose cost matrix exceeds the available systems memory. To our knowledge, this is the first implementation that is able to solve problems with more than one trillion arcs in less than 100 hours on a single machine.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
K. Eder ◽  
H. Sahlmann

Abstract In this paper, we study a class of symmetry reduced models of $$ \mathcal{N} $$ N = 1 super- gravity using self-dual variables. It is based on a particular Ansatz for the gravitino field as proposed by D’Eath et al. We show that the essential part of the constraint algebra in the classical theory closes. In particular, the (graded) Poisson bracket between the left and right supersymmetry constraint reproduces the Hamiltonian constraint.For the quantum theory, we apply techniques from the manifestly supersymmetric approach to loop quantum supergravity, which yields a graded analog of the holonomy-flux algebra and a natural state space.We implement the remaining constraints in the quantum theory. For a certain subclass of these models, we show explicitly that the (graded) commutator of the supersymmetry constraints exactly reproduces the classical Poisson relations. In particular, the trace of the commutator of left and right supersymmetry constraints reproduces the Hamilton constraint operator. Finally, we consider the dynamics of the theory and compare it to a quantization using standard variables and standard minisuperspace techniques.


2021 ◽  
Author(s):  
Georgios Tsaousoglou ◽  
Katerina Mitropoulou ◽  
Konstantinos Steriotis ◽  
Nikolaos Paterakis ◽  
Pierre Pinson ◽  
...  

<div>In modern power systems, small distributed energy resources (DERs) are considered a valuable source of flexibility towards accommodating high penetration of Renewable Energy Sources (RES). In this paper we consider an economic dispatch problem for a community of DERs, where energy management decisions are made online and under uncertainty. We model multiple sources of uncertainty such as RES, wholesale electricity prices as well as the arrival times and energy needs of a set of Electric Vehicles. The economic dispatch problem is formulated as a multi-agent Markov Decision Process. The difficulties lie in the curse of dimensionality and in guaranteeing the satisfaction of constraints under uncertainty.</div><div>A novel method, that combines duality theory and deep learning, is proposed to tackle these challenges. In particular, a Neural Network (NN) is trained to return the optimal dual variables of the economic dispatch problem. By training the NN on the dual problem instead of the primal, the number of output neurons is dramatically reduced, which enhances the performance and reliability of the NN. Finally, by treating the resulting dual variables as prices, each distributed agent can self-schedule, which guarantees the satisfaction of its constraints. As a result, our simulations show that the proposed scheme performs reliably and efficiently.</div>


2021 ◽  
Author(s):  
Georgios Tsaousoglou ◽  
Katerina Mitropoulou ◽  
Konstantinos Steriotis ◽  
Nikolaos Paterakis ◽  
Pierre Pinson ◽  
...  

<div>In modern power systems, small distributed energy resources (DERs) are considered a valuable source of flexibility towards accommodating high penetration of Renewable Energy Sources (RES). In this paper we consider an economic dispatch problem for a community of DERs, where energy management decisions are made online and under uncertainty. We model multiple sources of uncertainty such as RES, wholesale electricity prices as well as the arrival times and energy needs of a set of Electric Vehicles. The economic dispatch problem is formulated as a multi-agent Markov Decision Process. The difficulties lie in the curse of dimensionality and in guaranteeing the satisfaction of constraints under uncertainty.</div><div>A novel method, that combines duality theory and deep learning, is proposed to tackle these challenges. In particular, a Neural Network (NN) is trained to return the optimal dual variables of the economic dispatch problem. By training the NN on the dual problem instead of the primal, the number of output neurons is dramatically reduced, which enhances the performance and reliability of the NN. Finally, by treating the resulting dual variables as prices, each distributed agent can self-schedule, which guarantees the satisfaction of its constraints. As a result, our simulations show that the proposed scheme performs reliably and efficiently.</div>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yanfei You ◽  
Suhong Jiang

<p style='text-indent:20px;'>This paper presents an improved Lagrangian-PPA based prediction correction method to solve linearly constrained convex optimization problem. At each iteration, the predictor is achieved by minimizing the proximal Lagrangian function with respect to the primal and dual variables. These optimization subproblems involved either admit analytical solutions or can be solved by a fast algorithm. The new update is generated by using the information of the current iterate and the predictor, as well as an appropriately chosen stepsize. Compared with the existing PPA based method, the parameters are relaxed. We also establish the convergence and convergence rate of the proposed method. Finally, numerical experiments are conducted to show the efficiency of our Lagrangian-PPA based prediction correction method.</p>


Author(s):  
Mohit Bansil ◽  
Jun Kitagawa

Abstract We show quantitative stability results for the geometric “cells” arising in semi-discrete optimal transport problems. We first show stability of the associated Laguerre cells in measure, without any connectedness or regularity assumptions on the source measure. Next we show quantitative invertibility of the map taking dual variables to the measures of Laguerre cells, under a Poincarè-Wirtinger inequality. Combined with a regularity assumption equivalent to the Ma–Trudinger–Wang conditions of regularity in Monge-Ampère, this invertibility leads to stability of Laguerre cells in Hausdorff measure and also stability in the uniform norm of the dual potential functions, all stability results come with explicit quantitative bounds. Our methods utilize a combination of graph theory, convex geometry, and Monge-Ampère regularity theory.


Sign in / Sign up

Export Citation Format

Share Document