scholarly journals Server Placement and Task Allocation for Load Balancing in Edge-Computing Networks

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 138200-138208
Author(s):  
Ping-Chun Huang ◽  
Tai-Lin Chin ◽  
Tzu-Yi Chuang
Author(s):  
Guangshun Li ◽  
Yonghui Yao ◽  
Junhua Wu ◽  
Xiaoxiao Liu ◽  
Xiaofei Sheng ◽  
...  

AbstractThe latency of cloud computing is high for the reason that it is far from terminal users. Edge computing can transfer computing from the center to the network edge. However, the problem of load balancing among different edge nodes still needs to be solved. In this paper, we propose a load balancing strategy by task allocation in edge computing based on intermediary nodes. The intermediary node is used to monitor the global information to obtain the real-time attributes of the edge nodes and complete the classification evaluation. First, edge nodes can be classified to three categories (light-load, normal-load, and heavy-load), according to their inherent attributes and real-time attributes. Then, we propose a task assignment model and allocate new tasks to the relatively lightest load node. Experiments show that our method can balance load among edge nodes and reduce the completion time of tasks.


2019 ◽  
Vol 6 (3) ◽  
pp. 5853-5863 ◽  
Author(s):  
Song Yang ◽  
Fan Li ◽  
Meng Shen ◽  
Xu Chen ◽  
Xiaoming Fu ◽  
...  

Author(s):  
Ping ZHAO ◽  
Jiawei TAO ◽  
Abdul RAUF ◽  
Fengde JIA ◽  
Longting XU

Author(s):  
Yuvaraj Natarajan ◽  
Srihari Kannan ◽  
Gaurav Dhiman

Background: Cloud computing is a multi-tenant model for computation that offers various features for computing and storage based on user demand. With increasing cloud users, the usage increases that highlights the problem of load balancing with limited resource availability based on dynamic cloud environment. In such cases, task scheduling creates fundamental issue in cloud environment. Introduction: Certain problems such as, inefficiencies in load balancing latency, throughput ratio, proper utilization of the cloud resources, better energy consumption and response time have been observed. These drawbacks can be efficiently resolved through the incorporation of efficient load balancing and task scheduling strategies. Method: In this paper, we develop an efficient co-operative method to solve the most recent approaches against load balancing and task scheduling have been proposed using Ant Colony Optimization (ACO). These approaches enables in the clear cut identification of the problems associated with the load balancing and task scheduling strategies in the cloud environment. Results: The simulation is conducted to find the efficacy of the improved ACO system for load balancing in cloud than the other methods. The result shows that the proposed method obtains reduced execution time, reduced cost and delay. Conclusion: A unique strategic approach is developed in this paper, Load Balancing, which works with the ACO in relation to the cloud workload balancing task through the incorporation of the ACO technique. The strategy for determining the applicant nodes is based on which the load balancing approach would essentially depend. By incorporating two different approaches: the maximum minute rules and the forward-backward ant, this reliability task can be established. This method is intended to articulate the initialization of the pheromone and thus upgrade the relevant cloud-based physical properties.


Sign in / Sign up

Export Citation Format

Share Document