A Hierarchical Restoration Mechanism for Complex Distribution Networks Considering Multi-type Faults

Author(s):  
Juan WEN ◽  
Xing QU
2017 ◽  
Vol 54 (3) ◽  
pp. 3-12
Author(s):  
O. Kochukov ◽  
A. Mutule

AbstractThe main objective of the paper is to present an innovative complex approach to distributed generation planning and show the advantages over existing methods. The approach will be most suitable for DNOs and authorities and has specific calculation targets to support the decision-making process. The method can be used for complex distribution networks with different arrangement and legal base.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Juan Wen ◽  
Xing Qu ◽  
Lin Jiang ◽  
Siyu Lin

Service restoration of distribution networks in contingency situations is one of the highly investigated and challenging problems. In the conventional service restoration method, utilities reconfigure the topological structure of the distribution networks to supply the consumer load demands. However, the advancements in renewable distributed generations define a new dimension for developing service restoration methodologies. This paper proposes a hierarchical service restoration mechanism for distribution networks in the presence of distributed generations and multiple faults. The service restoration problem is modeled as a complicated and hierarchical program. The objectives are to achieve the maximization of loads restored with minimization of switch operations while simultaneously satisfying grid operational constraints and ensuring a radial operation configuration. We present the service restoration mechanism, which includes the dynamic topology analysis, matching isolated islands with renewable distributed generations, network reconfiguration, and network optimization. A new code scheme that avoids feasible solutions is applied to generate candidate solutions to reduce the computational burden. We evaluate the proposed mechanism on the IEEE 33 and 69 systems and report on the collected results under multitype fault cases. The results demonstrate the importance of the available renewable distributed generations in the proposed mechanism. Moreover, simulation results verify that the proposed mechanism can obtain reasonable service restoration plans to achieve the maximization of loads restored and minimization of switching operations under different faults.


Author(s):  
L.M. Berry ◽  
B.A. Murtagh ◽  
G.B. McMahon ◽  
S.J. Sugden ◽  
L.D. Welling

Sign in / Sign up

Export Citation Format

Share Document