Optimal coordination of directional overcurrent relays in complex distribution networks using sine cosine algorithm

2020 ◽  
Vol 187 ◽  
pp. 106435
Author(s):  
Kumari Sarwagya ◽  
Paresh Kumar Nayak ◽  
Suman Ranjan
Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 922 ◽  
Author(s):  
Sergio Danilo Saldarriaga-Zuluaga ◽  
Jesús María López-Lezama ◽  
Nicolás Muñoz-Galeano

The optimal coordination of overcurrent relays (OCRs) has recently become a major challenge owing to the ever-increasing participation of distributed generation (DG) and the multi-looped structure of modern distribution networks (DNs). Furthermore, the changeable operational topologies of microgrids has increased the complexity and computational burden to obtain the optimal settings of OCRs. In this context, classical approaches to OCR coordination might no longer be sufficient to provide a reliable performance of microgrids both in the islanded and grid-connected operational modes. This paper proposes a novel approach for optimal coordination of directional OCRs in microgrids. This approach consists of considering the upper limit of the plug setting multiplier (PSM) as a variable instead of a fixed parameter as usually done in traditional approaches for OCRs coordination. A genetic algorithm (GA) was implemented to optimize the limits of the maximum PSM for the OCRs coordination. Several tests were performed with an IEC microgrid benchmark network considering several operational modes. Results showed the applicability and effectiveness of the proposed approach. A comparison with other studies reported in the specialized literature is provided showing the advantages of the proposed approach.


2021 ◽  
Vol 11 (19) ◽  
pp. 9207
Author(s):  
Sergio D. Saldarriaga-Zuluaga ◽  
Jesús M. López-Lezama ◽  
Nicolás Muñoz-Galeano

In recent years, distributed generation (DG) has become more common in modern distribution networks (DNs). The presence of these small-scale generation units within a DN brings new challenges to protection engineers, since short-circuit currents tend to increase; additionally, as with microgrids, modern DNs may feature several operational modes depending on their topology and the availability of DG. This paper presents a methodology for the optimal coordination of overcurrent relays (OCRs) in modern DNs with a high presence of DG. Given the fact that protection coordination is a non-linear and non-convex optimization problem, a hybrid harmony search and simulated annealing (HS-SA) approach was implemented for its solution and compared against other techniques, such as conventional HS, genetic algorithm (GA), particle swarm optimization (PSO) and hybrid PSO-HS. Several tests were performed on a DN, considering different operative scenarios as a function of the DG available within the network. A comparison with other works reported in the specialized literature was carried out, evidencing the applicability and effectiveness of the HS-SA technique in solving the optimal OCR coordination problem in modern DNs.


Sign in / Sign up

Export Citation Format

Share Document