distributed generations
Recently Published Documents


TOTAL DOCUMENTS

728
(FIVE YEARS 274)

H-INDEX

30
(FIVE YEARS 9)

2022 ◽  
Vol 8 ◽  
pp. 1438-1447
Author(s):  
Hao Bai ◽  
Xueyong Tang ◽  
Zhiyong Yuan ◽  
Qingsheng Li ◽  
Shuhui Pan ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Juan Wen ◽  
Xing Qu ◽  
Lin Jiang ◽  
Siyu Lin

Service restoration of distribution networks in contingency situations is one of the highly investigated and challenging problems. In the conventional service restoration method, utilities reconfigure the topological structure of the distribution networks to supply the consumer load demands. However, the advancements in renewable distributed generations define a new dimension for developing service restoration methodologies. This paper proposes a hierarchical service restoration mechanism for distribution networks in the presence of distributed generations and multiple faults. The service restoration problem is modeled as a complicated and hierarchical program. The objectives are to achieve the maximization of loads restored with minimization of switch operations while simultaneously satisfying grid operational constraints and ensuring a radial operation configuration. We present the service restoration mechanism, which includes the dynamic topology analysis, matching isolated islands with renewable distributed generations, network reconfiguration, and network optimization. A new code scheme that avoids feasible solutions is applied to generate candidate solutions to reduce the computational burden. We evaluate the proposed mechanism on the IEEE 33 and 69 systems and report on the collected results under multitype fault cases. The results demonstrate the importance of the available renewable distributed generations in the proposed mechanism. Moreover, simulation results verify that the proposed mechanism can obtain reasonable service restoration plans to achieve the maximization of loads restored and minimization of switching operations under different faults.


2021 ◽  
Vol 20 ◽  
pp. 01-11
Author(s):  
Ngo Minh Khoa ◽  
Tran Xuan Khoa

Nowadays, more distributed generations (DGs) are connected to a radial distribution network, so conventional overcurrent relays cannot operate correctly when a fault occurs in the network. This study proposes a method to determine the fault direction in a three-phase distribution network integrated with DGs. The obtained pre-fault and fault currents are utilized to extract their phasors by the fast Fourier transform, and the phase angle difference between the positive-sequence components of the pre-fault and fault currents is used. Moreover, the method only uses the local current measurement to calculate and identify the phase angle change of the fault current without using the voltage measurement. Matlab/Simulink software is used to simulate the three-phase distribution network integrated with DGs. The faults with different resistances are assumed to occur at backward and forward fault locations. The simulation results show that the proposed method correctly determines the fault direction.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Minh-Tuan Nguyen Hoang ◽  
Bao-Huy Truong ◽  
Khoa Truong Hoang ◽  
Khanh Dang Tuan ◽  
Dieu Vo Ngoc

This study suggests an enhanced metaheuristic method based on the Symbiotic Organisms Search (SOS) algorithm, namely, Quasioppositional Chaotic Symbiotic Organisms Search (QOCSOS). It aims to optimize the network configuration simultaneously and allocate distributed generation (DG) subject to the minimum real power loss in radial distribution networks (RDNs). The suggested method is developed by integrating the Quasiopposition-Based Learning (QOBL) as well as Chaotic Local Search (CLS) approaches into the original SOS algorithm to obtain better global search capacity. The proposed QOCSOS algorithm is tested on 33-, 69-, and 119-bus RDNs to verify its effectiveness. The findings demonstrate that the suggested QOCSOS technique outperformed the original SOS and provided higher-quality alternatives than many other methods studied. Accordingly, the proposed QOCSOS algorithm is favourable in adapting to the DG placement problems and optimal distribution network reconfiguration.


2021 ◽  
Vol 11 (24) ◽  
pp. 12114
Author(s):  
Yuanjing Zeng ◽  
Xiangjun Quan ◽  
Qinran Hu ◽  
Zhixiang Zou ◽  
Fujin Deng

With the wide application of distributed generations (DGs) and microgrids (MGs), the inverter control becomes a hot research topic. For the inverter control in MG applications, first, a complex variable state-feedback-based switch control frame is proposed. In the proposed control frame, the state feedback leads to a generalized control objective (GCO), and then the instantaneous voltage and current controls are designed based on the GCO. Finally, a complex variable frequency-locked loop (FLL) is adopted to realize the voltage and current reference computation. The control system is integrated by complex variables to alleviate the seamless switch. The effectiveness of the proposed control method is validated by experimental results.


Sign in / Sign up

Export Citation Format

Share Document