Very deep convolutional neural network based image classification using small training sample size

Author(s):  
Shuying Liu ◽  
Weihong Deng
2020 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Adam Adli ◽  
Pascal Tyrrell

Introduction: Advances in computers have allowed for the practical application of increasingly advanced machine learning models to aid healthcare providers with diagnosis and inspection of medical images. Often, a lack of training data and computation time can be a limiting factor in the development of an accurate machine learning model in the domain of medical imaging. As a possible solution, this study investigated whether L2 regularization moderate s the overfitting that occurs as a result of small training sample sizes.Methods: This study employed transfer learning experiments on a dental x-ray binary classification model to explore L2 regularization with respect to training sample size in five common convolutional neural network architectures. Model testing performance was investigated and technical implementation details including computation times and hardware considerations as well as performance factors and practical feasibility were described.Results: The experimental results showed a trend that smaller training sample sizes benefitted more from regularization than larger training sample sizes. Further, the results showed that applying L2 regularization did not apply significant computational overhead and that the extra rounds of training L2 regularization were feasible when training sample sizes are relatively small.Conclusion: Overall, this study found that there is a window of opportunity in which the benefits of employing regularization can be most cost-effective relative to training sample size. It is recommended that training sample size should be carefully considered when forming expectations of achievable generalizability improvements that result from investing computational resources into model regularization.


2021 ◽  
Author(s):  
Wenjie Cao ◽  
Cheng Zhang ◽  
Zhenzhen Xiong ◽  
Ting Wang ◽  
Junchao Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document