Land Use and Land Cover Classification for Bangladesh 2005 on Google Earth Engine

Author(s):  
Zhiqi Yu ◽  
Liping Di ◽  
Junmei Tang ◽  
Chen Zhang ◽  
Li Lin ◽  
...  
2021 ◽  
pp. 101474
Author(s):  
Ritika Prasai ◽  
T. Wayne Schwertner ◽  
Kumar Mainali ◽  
Heather Mathewson ◽  
Hemanta Kafley ◽  
...  

2021 ◽  
Vol 21 ◽  
pp. 100459
Author(s):  
Willyan Ronaldo Becker ◽  
Thiago Berticelli Ló ◽  
Jerry Adriani Johann ◽  
Erivelto Mercante

2020 ◽  
Vol 10 (20) ◽  
pp. 7336 ◽  
Author(s):  
Lili Lin ◽  
Zhenbang Hao ◽  
Christopher J. Post ◽  
Elena A. Mikhailova ◽  
Kunyong Yu ◽  
...  

Island ecosystems are particularly susceptible to climate change and human activities. The change of land use and land cover (LULC) has considerable impacts on island ecosystems, and there is a critical need for a free and open-source tool for detecting land cover fluctuations and spatial distribution. This study used Google Earth Engine (GEE) to explore land cover classification and the spatial pattern of major land cover change from 1990 to 2019 on Haitan Island, China. The land cover classification was performed using multiple spectral bands (RGB, NIR, SWIR), vegetation indices (NDVI, NDBI, MNDWI), and tasseled cap transformation of Landsat images based on the random forest supervised algorithm. The major land cover conversion processes (transfer to and from) between 1990 and 2019 were analyzed in detail for the years of 1990, 2000, 2007, and 2019, and the overall accuracies ranged from 88.43% to 91.08%, while the Kappa coefficients varied from 0.86 to 0.90. During 1990–2019, other land, cultivated land, sandy land, and water area decreased by 30.70%, 13.63%, 3.76%, and 0.95%, respectively, while forest and built-up land increased by 30.94% and 16.20% of the study area, respectively. The predominant land cover was other land (34.49%) and cultivated land (26.80%) in 1990, which transitioned to forest land (53.57%) and built-up land (23.07%) in 2019. Reforestation, cultivated land reduction, and built-up land expansion were the major land cover change processes on Haitan Island. The spatial pattern of forest, cultivated land, and built-up land change is mainly explained by the implementation of a ‘Grain for Green Project’ and ‘Comprehensive Pilot Zone’ policy on Haitan Island. Policy and human activities are the major drivers for land use change, including reforestation, population growth, and economic development. This study is unique because it demonstrates the use of GEE for continuous monitoring of the impact of reforestation efforts and urbanization in an island environment.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 173
Author(s):  
Changjun Gu ◽  
Yili Zhang ◽  
Linshan Liu ◽  
Lanhui Li ◽  
Shicheng Li ◽  
...  

Land use and land cover (LULC) changes are regarded as one of the key drivers of ecosystem services degradation, especially in mountain regions where they may provide various ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however, the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE) and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal. Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis showed that the expansions of cropland were the major drivers of the forest cover change in the KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment existed in the KSL during the study period. The observed forest degradation directly influenced the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in 2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by 1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2020 ◽  
Vol 12 (15) ◽  
pp. 2411 ◽  
Author(s):  
Thanh Noi Phan ◽  
Verena Kuch ◽  
Lukas W. Lehnert

Land cover information plays a vital role in many aspects of life, from scientific and economic to political. Accurate information about land cover affects the accuracy of all subsequent applications, therefore accurate and timely land cover information is in high demand. In land cover classification studies over the past decade, higher accuracies were produced when using time series satellite images than when using single date images. Recently, the availability of the Google Earth Engine (GEE), a cloud-based computing platform, has gained the attention of remote sensing based applications where temporal aggregation methods derived from time series images are widely applied (i.e., the use the metrics such as mean or median), instead of time series images. In GEE, many studies simply select as many images as possible to fill gaps without concerning how different year/season images might affect the classification accuracy. This study aims to analyze the effect of different composition methods, as well as different input images, on the classification results. We use Landsat 8 surface reflectance (L8sr) data with eight different combination strategies to produce and evaluate land cover maps for a study area in Mongolia. We implemented the experiment on the GEE platform with a widely applied algorithm, the Random Forest (RF) classifier. Our results show that all the eight datasets produced moderately to highly accurate land cover maps, with overall accuracy over 84.31%. Among the eight datasets, two time series datasets of summer scenes (images from 1 June to 30 September) produced the highest accuracy (89.80% and 89.70%), followed by the median composite of the same input images (88.74%). The difference between these three classifications was not significant based on the McNemar test (p > 0.05). However, significant difference (p < 0.05) was observed for all other pairs involving one of these three datasets. The results indicate that temporal aggregation (e.g., median) is a promising method, which not only significantly reduces data volume (resulting in an easier and faster analysis) but also produces an equally high accuracy as time series data. The spatial consistency among the classification results was relatively low compared to the general high accuracy, showing that the selection of the dataset used in any classification on GEE is an important and crucial step, because the input images for the composition play an essential role in land cover classification, particularly with snowy, cloudy and expansive areas like Mongolia.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2493 ◽  
Author(s):  
Meena Kumari Kolli ◽  
Christian Opp ◽  
Daniel Karthe ◽  
Michael Groll

India’s largest freshwater ecosystem of the Kolleru Lake has experienced severe threats by land-use changes, including the construction of illegal fishponds around the lake area over the past five decades. Despite efforts to protect and restore the lake and its riparian zones, environmental pressures have increased over time. The present study provides a synthesis of human activities through major land-use changes around Kolleru Lake both before and after restoration measures. For this purpose, archives of all Landsat imageries from the last three decades were used to detect land cover changes. Using the Google Earth Engine cloud platform, three different land-use scenarios were classified for the year before restoration (1999), for 2008 immediately after the restoration, and for 2018, i.e., the current situation of the lake one decade afterward. Additionally, the NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water Index) indices were used to identify land cover dynamics. The results show that the restoration was successful; consequently, after a decade, the lake was transformed into the previous state of restoration (i.e., 1999 situation). In 1999, 29.7% of the Kolleru Lake ecosystem was occupied by fishponds, and, after a decade of sustainable restoration, 27.7% of the area was fishponds, almost reaching the extent of the 1999 situation. On the one hand, aquaculture is one of the most promising sources of income, but there is also limited awareness of its negative environmental impacts among local residents. On the other hand, political commitment to protect the lake is weak, and integrated approaches considering all stakeholders are lacking. Nevertheless, alterations of land and water use, increasing nutrient concentrations, and sediment inputs from the lake basin have reached a level at which they threaten the biodiversity and functionality of India’s largest wetland ecosystem to the degree that immediate action is necessary to prevent irreversible degradation.


Sign in / Sign up

Export Citation Format

Share Document