nutrient concentrations
Recently Published Documents


TOTAL DOCUMENTS

2820
(FIVE YEARS 776)

H-INDEX

82
(FIVE YEARS 8)

2022 ◽  
Vol 277 ◽  
pp. 108401
Author(s):  
Jacob Bulenga Lisuma ◽  
Amon Joel Philip ◽  
Patrick Alois Ndakidemi ◽  
Ernest Rashid Mbega

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 245
Author(s):  
Zhe Xiao ◽  
Xiaochuang Li ◽  
Shouliang Huo

Arsenic accumulation and biotransformation in algae was mostly carried out in a medium that contained far higher nutrient concentrations than that in natural freshwaters. The obtained results might have limited environmental validity and result in a failure to describe authentic arsenic biogeochemical cycles in natural freshwater systems. To validate the assumption, arsenic accumulation, and biotransformation in common bloom forming Microcystis wesenbergii was performed under a high nutrient concentration in BG11 medium (N = 250 mg/L, P = 7.13 mg/L), and adjusted low nutrients that mimicked values in natural freshwaters (N = 1.5 mg/L, P = 0.3 mg/L). The growth rate and maximum M. wesenbergii cell density were much lower in the high nutrient set, but more inhibition was shown with increasing ambient iAs(V) concentrations both in the high and low nutrient sets. The proportion of intracellular contents in total arsenicals decreased with increasing iAs(V) concentrations in both high and low nutrient sets but increased with incubation time. Intracellular iAs(III) was not found in the high nutrient set, while it formed high concentrations that could be comparable to that of an extracellular level in the low nutrient set. M. wesenbergii could methylate arsenic, and a higher proportion of organoarsenicals was formed in the low nutrient set. Lower intracellular MMA(V) and DMA(V) concentrations were found in the high nutrient set; contrarily, they presented a higher concentration that could be comparable to the extracellular ones in the low nutrient set. The results demonstrated that different nutrient regimes could affect arsenic accumulation and biotransformation in M. wesenbergii, and low nutrient concentrations could inhibit the excretion of iAs(III), MMA(V) and DMA(V) out of cells. Further investigations should be based on natural freshwater systems to obtain an authentic arsenic accumulation and biotransformation in cyanobacteria.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 217
Author(s):  
Xiaomei Su ◽  
Alan D. Steinman ◽  
Yunlin Zhang ◽  
Hong Ling ◽  
Dan Wu

Sediment nutrients can be released to the surface water when hydraulic disturbance becomes strong in shallow lakes, which contributes to nutrient enrichment and subsequent lake eutrophication in the water column. To explore the seasonal variations and spatial distributions exhibited by nutrients in the water column, surface sediment, and pore water of Lake Yangcheng and its major tributaries, we determined the concentrations of nitrogen (N) and phosphorus (P) throughout the lake in different seasons of 2018. Total N (TN) and total P (TP) concentrations in the connected rivers were much greater than those in the lake, indicating that external loading greatly contributed to the nutrient enrichment. TN concentration in the water column was highest in the winter, whereas TP peaked in the summer. A similar temporal pattern was observed for TN and TP in the sediment with maxima in the winter and minima in the summer; however, nutrients in the pore water were highest in the summer, in contrast to the temporal variation in the sediment. Additionally, high TN values in the water column and high TP in the three compartments were distributed primarily in the west part of the lake, while high TN concentrations in the sediment and pore water were observed mainly in the east portion of the lake. According to the enrichment factor index (an indicator evaluating the nutrient enrichment by comparing the detected contents and standard values), nutrients in the lake sediment were severely enriched with TN and TP averaging 2195.8 mg/kg and 543.0 mg/kg, respectively. The vertical distribution of TN and TP generally exhibited similar decreasing patterns with an increase in sediment depth, suggesting mineralization of TN and TP by microbes and benthic organisms. More attention and research are needed to understand the seasonality of nutrient exchange across the sediment–water interface, especially in eutrophic lakes.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262460
Author(s):  
Gifty E. Acquah ◽  
Javier Hernandez-Allica ◽  
Cathy L. Thomas ◽  
Sarah J. Dunham ◽  
Erick K. Towett ◽  
...  

With the increasing popularity of local blending of fertilisers, the fertiliser industry faces issues regarding quality control and fertiliser adulteration. Another problem is the contamination of fertilisers with trace elements that have been shown to subsequently accumulate in the soil and be taken up by plants, posing a danger to the environment and human health. Conventional characterisation methods necessary to ensure the quality of fertilisers and to comply with local regulations are costly, time consuming and sometimes not even accessible. Alternatively, using a wide range of unamended and intentionally amended fertilisers this study developed empirical calibrations for a portable handheld X-ray fluorescence (pXRF) spectrometer, determined the reliability for estimating the macro and micro nutrients and evaluated the use of the pXRF for the high-throughput detection of trace element contaminants in fertilisers. The models developed using pXRF for Mg, P, S, K, Ca, Mn, Fe, Zn and Mo had R2 values greater or equal to 0.97. These models also performed well on validation, with R2 values greater or equal to 0.97 (except for Fe, R2val = 0.55) and slope values ranging from 0.81 to 1.44. A second set of models were developed with a focus on trace elements in amended fertilisers. The R2 values of calibration for Co, Ni, As, Se, Cd and Pb were greater than or equal to 0.80. At concentrations up to 1000 mg kg-1, good validation statistics were also obtained; R2 values ranged from 0.97–0.99, except in one instance. The regression coefficients of the validation also had good prediction in the range of 0–100 mg kg-1 (R2 values were from 0.78–0.99), but not as well at lower concentrations up to 20 mg kg-1 (R2 values ranged from 0.10–0.99), especially for Cd. This study has demonstrated that pXRF can measure several major (P, Ca) and micro (Mn, Fe, Cu) nutrients, as well as trace elements and potential contaminants (Cr, Ni, As) in fertilisers with high accuracy and precision. The results obtained in this study is good, especially considering that loose powders were scanned for a maximum of 90 seconds without the use of a vacuum pump.


2022 ◽  
Vol 12 ◽  
Author(s):  
Daniel C. Olk ◽  
Dana L. Dinnes ◽  
Chad R. Callaway

Field evaluations of commercial humic products have seldom involved replication across location or year. To evaluate the consistency of humic product efficacy in field conditions, we determined the effects of a humic product on maize (Zea mays L.) growth in high-yielding Midwestern (US) fields through the following two extensive approaches: (i) replicated strip plots in five site—year combinations from 2010 to 2013; and (ii) demonstration strips in 30–35 production fields annually from 2009 to 2011 that covered major areas of Iowa. Mechanized combine measurements of grain yield showed increases of 0.2–0.4 Mg ha–1 (1–4%) with humic product application for all five site—year combinations of the replicated strip plots. Six of 10 humic treatments within the fields responded positively (P < 0.07), and the positive responses of two more treatments approached significance at the benchmark of P = 0.10. In the demonstration strips, maize grain weight in hand-collected samples increased significantly (P < 0.004) with humic product application in each of the three growing seasons, and across all the three seasons by 6.5% (P < 0.001). Grain weight increased numerically for 76 of the 98 demonstration strips. Yield component analysis for both the replicated strip plots and the demonstration strips attributed the yield boosts largely to increased ear length, especially of the shorter ears. Humic product application caused significantly (P < 0.10) greater total leaf area in all eight field treatments at three site—year combinations. Humic product application did not consistently affect nutrient concentrations of the grain or stover or any measured soil property. These results represent among the widest geographic evaluations published on field efficacy of a humic product. They demonstrate the capability of a humic product to improve maize growth in high-yielding conditions.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 169
Author(s):  
Dajun Yu ◽  
Joshua O’Hair ◽  
Nicholas Poe ◽  
Qing Jin ◽  
Sophia Pinton ◽  
...  

Fermentation of food waste into 2,3-butanediol (2,3-BDO), a high-value chemical, is environmentally sustainable and an inexpensive method to recycle waste. Compared to traditional mesophilic fermentation, thermophilic fermentation can inhibit the growth of contaminant bacteria, thereby improving the success of food waste fermentation. However, the effects of sugar and nutrient concentrations in thermophilic food waste fermentations are currently unclear. Here, we investigated the effects of sugar and nutrients (yeast extract (YE) and peptone) concentrations on 2,3-BDO production from fermenting glucose and food waste media using the newly isolated thermophilic Bacillus licheniformis YNP5-TSU. When glucose media was used, fermentation was greatly affected by sugar and nutrient concentrations: excessive glucose (>70 g/L) slowed down the fermentation and low nutrients (2 g/L YE and 1 g/L peptone) caused fermentation failure. However, when food waste media were used with low nutrient addition, the bacteria consumed all 57.8 g/L sugars within 24 h and produced 24.2 g/L 2,3-BDO, equivalent to a fermentation yield of 0.42 g/g. An increase in initial sugar content (72.9 g/L) led to a higher 2,3-BDO titer of 36.7 g/L with a nearly theoretical yield of 0.47 g/g. These findings may provide fundamental knowledge for designing cost-effective food waste fermentation to produce 2,3-BDO.


Biologia ◽  
2022 ◽  
Author(s):  
Mahesh Mohan ◽  
Girija Devaki ◽  
Kulkarni Surendra Gopal ◽  
Paikkattumana Sureshkumar

Ocean Science ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. 29-49
Author(s):  
Jaclyn Clement Kinney ◽  
Karen M. Assmann ◽  
Wieslaw Maslowski ◽  
Göran Björk ◽  
Martin Jakobsson ◽  
...  

Abstract. Substantial amounts of nutrients and carbon enter the Arctic Ocean from the Pacific Ocean through the Bering Strait, distributed over three main pathways. Water with low salinities and nutrient concentrations takes an eastern route along the Alaskan coast, as Alaskan Coastal Water. A central pathway exhibits intermediate salinity and nutrient concentrations, while the most nutrient-rich water enters the Bering Strait on its western side. Towards the Arctic Ocean, the flow of these water masses is subject to strong topographic steering within the Chukchi Sea with volume transport modulated by the wind field. In this contribution, we use data from several sections crossing Herald Canyon collected in 2008 and 2014 together with numerical modelling to investigate the circulation and transport in the western part of the Chukchi Sea. We find that a substantial fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. This water then contributes to the high-nutrient waters of Herald Canyon. The bottom of the canyon has the highest nutrient concentrations, likely as a result of addition from the degradation of organic matter at the sediment surface in the East Siberian Sea. The flux of nutrients (nitrate, phosphate, and silicate) and dissolved inorganic carbon in Bering Summer Water and Winter Water is computed by combining hydrographic and nutrient observations with geostrophic transport referenced to lowered acoustic Doppler current profiler (LADCP) and surface drift data. Even if there are some general similarities between the years, there are differences in both the temperature–salinity and nutrient characteristics. To assess these differences, and also to get a wider temporal and spatial view, numerical modelling results are applied. According to model results, high-frequency variability dominates the flow in Herald Canyon. This leads us to conclude that this region needs to be monitored over a longer time frame to deduce the temporal variability and potential trends.


2022 ◽  
Vol 34 ◽  
Author(s):  
Matheus Vieira da Silva ◽  
Jascieli Carla Bortolini ◽  
Susicley Jati

Abstract Aim We aimed to characterize the structure of the phytoplankton community and identify the main environmental factors driving the community in five reservoirs constructed in the region of the high Paraná River. Methods The phytoplankton and environmental variables were collected at the lacustrine region of the reservoir, between November 2013 and November 2014, with interval between collections ranged from 3 to 6 months. The richness and biomass of the phytoplankton community were measured as a response to the spatial and temporal environmental variability. Data from environmental variables was analyzed by Principal Component Analysis (PCA). Non-Metric Multidimensional Scaling Analyzes (NMDS) were performed on the richness and biomass data of the phytoplankton community. Results We identified 80 taxa distributed in 11 taxonomic classes, from which Cyanobacteria and Chlorophyceae were best represented. We did not observe significant temporal variation for either environmental variables or attributes of the phytoplankton community, which may be related to the prolonged drought in this period in the Brazilian Southwest. Higher phytoplankton richness and biomass were found in the Três Irmãos (Tiete River), reservoir located in the most anthropized basin in the country. Cyanobacteria and dinoflagellates dominated the biomass in all reservoirs during the studied period. The Ilha Solteira, Jupiá and Porto Primavera reservoirs showed a tendency to decrease in the values of phytoplankton richness and biomass, and the reservoirs built in series in the Paraná River probably have strong interdependence, according to the CRCC concept. Conclusions Spatial variation in phytoplankton attributes was influenced mainly by the position occupied by the reservoir in the hydrographic basin, water retention time (RT) and nutrient concentrations in each reservoir.


Sign in / Sign up

Export Citation Format

Share Document