Variability of whole-body average SAR in human models for far-field exposures

Author(s):  
A. Hirata ◽  
O. Fujiwara ◽  
T. Nagaoka ◽  
S. Watanabe
Keyword(s):  
2009 ◽  
Vol 129 (12) ◽  
pp. 2102-2107 ◽  
Author(s):  
Akimasa Hirata ◽  
Yoshio Nagaya ◽  
Naoki Ito ◽  
Osamu Fujiwara ◽  
Tomoaki Nagaoka ◽  
...  

2018 ◽  
Vol 74 (1-2) ◽  
pp. 93-102 ◽  
Author(s):  
Takahiro Iyama ◽  
Teruo Onishi ◽  
Kensuke Sasaki ◽  
Tomoaki Nagaoka ◽  
Lira Hamada ◽  
...  

2016 ◽  
Author(s):  
Eunjoo Hwang ◽  
Jingwen Hu ◽  
Cong Chen ◽  
Katelyn F. Klein ◽  
Carl S. Miller ◽  
...  

2014 ◽  
Vol 97 (12) ◽  
pp. 62-69
Author(s):  
Ryota Asayama ◽  
Jianqing Wang ◽  
Osamu Fujiwara ◽  
Tomoaki Nagaoka ◽  
Soichi Watanabe

2013 ◽  
Vol 133 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Ryota Asayama ◽  
Jianqing Wang ◽  
Osamu Fujiwara ◽  
Tomoaki Nagaoka ◽  
Soichi Watanabe

2013 ◽  
Vol 71 (2) ◽  
pp. 839-845 ◽  
Author(s):  
Manuel Murbach ◽  
Esra Neufeld ◽  
Wolfgang Kainz ◽  
Klaas P. Pruessmann ◽  
Niels Kuster
Keyword(s):  

2011 ◽  
Vol 9 ◽  
pp. 99-105 ◽  
Author(s):  
J. Gao ◽  
I. Munteanu ◽  
W. F. O. Müller ◽  
T. Weiland

Abstract. With the development of medical technique and computational electromagnetics, high resolution anatomic human models have already been widely developed and used in computation of electromagnetic fields induced in human body. Although these so called voxel-based human models are powerful tools for research on electromagnetic safety, their unchangeable standing posture makes it impossible to simulate a realistic scenario in which people have a lot of different postures. This paper describes a poser program package which was developed as an improved version of the free-from deformation technique to overcome this problem. It can set rotation angles of different human joints and then deform the original human model to make it have different postures. The original whole-body human model can be deformed smoothly, continuity of internal tissues and organs is maintained and the mass of different tissues and organs can be conserved in a reasonable level. As a typical application of the postured human models, this paper also studies the effect of the step voltage due to a lightning strike on the human body. Two voxel-based human body models with standing and walking posture were developed and integrated into simulation models to compute the current density distribution in the human body shocked by the step voltage. In order to speed up the transient simulation, the reduced c technique was used, leading to a speedup factor of around 20. The error introduced by the reduced c technique is discussed and simulation results are presented in detail.


Sign in / Sign up

Export Citation Format

Share Document