A single-terminal traveling wave fault location method for VSC-HVDC transmission lines based on S-transform

Author(s):  
Chuanxin Xi ◽  
Qing Chen ◽  
Lei Wang
2014 ◽  
Vol 556-562 ◽  
pp. 2723-2727 ◽  
Author(s):  
Lu Hua Xing ◽  
Qing Chen ◽  
Bing Lei Xue

A fault location method for HVDC (High Voltage Direct Current) transmission lines is proposed in this paper, using voltages and currents measured at two terminals of dc lines in time domain. Fault traveling waves propagate from the fault point to both terminals along the faulted line. The position that the traveling wave head arrives at some moment after the fault can be used to calculate the fault location. To determine the arrival positions of traveling wave head at each time indirectly, propagation characteristic curves of traveling wave heads at local and the remote terminals are calculated with distribution currents using the stationary wavelet transform. The accuracy of fault location will not be affected by transition resistance and fault position. Simulation results show that the presented fault location method can achieve quick and accurate fault location on the whole line under probable operation modes of a bipolar HVDC transmission system.


Author(s):  
Congshan Li ◽  
Ping He ◽  
Feng Wang ◽  
Cunxiang Yang ◽  
Yukun Tao ◽  
...  

Background: A novel fault location method of HVDC transmission line based on a concentric relaxation principle is proposed in this paper. Methods: Due to the different position of fault, the instantaneous energy measured from rectifier and inverter are different, and the ratio k between them is the relationship to the fault location d. Through the analysis of amplitude-frequency characteristics, we found that the wave attenuation characteristic of low frequency in the traveling wave is stable, and the amplitude of energy is larger, so we get the instantaneous energy ratio by using the low-frequency data. By using the method of wavelet packet decomposition, the voltage traveling wave signal was decomposed. Results: Finally, calculate the value k. By using the data fitting, the relative function of k and d can be got, that is the fault location function. Conclusion: After an exhaustive evaluation process considering different fault locations, fault resistances, and noise on the unipolar DC transmission system, four-machine two-area AC/DC parallel system, and an actual complex grid, the method presented here showed a very accurate and robust behavior.


2010 ◽  
Vol 25 (2) ◽  
pp. 1203-1209 ◽  
Author(s):  
Jiale Suonan ◽  
Shuping Gao ◽  
Guobing Song ◽  
Zaibin Jiao ◽  
Xiaoning Kang

Sign in / Sign up

Export Citation Format

Share Document