coupling characteristics
Recently Published Documents


TOTAL DOCUMENTS

531
(FIVE YEARS 158)

H-INDEX

24
(FIVE YEARS 4)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 420
Author(s):  
Zhihua Lin ◽  
Zhitao Zuo ◽  
Wei Li ◽  
Jianting Sun ◽  
Xin Zhou ◽  
...  

Relying on a closed test rig of a high-power intercooling centrifugal compressor for compressed air energy storage (CAES), this study measured the static pressure and static temperature at different radii on the static wall of the impeller backside cavity (IBC) under variable rotating speeds. Simultaneously, the coupled computations of all mainstream domains with IBC or not were used for comparative analysis of the aerodynamic performances of the compressor and the internal flow field in IBC. The results show that IBC has a significant impact on coupling characteristics including pressure ratio, efficiency, torque, shaft power, and axial thrust of the centrifugal compressor. The gradients of radial static pressure and static temperature in IBC both increase with the decrease of mainstream flow or the increase of rotating speed, whose distributions are different under variable rotating speeds due to the change of the aerodynamic parameters of mainstream.


2022 ◽  
Vol 16 (1) ◽  
pp. 104-116
Author(s):  
Massimiliano Rigacci ◽  
◽  
Ryuta Sato ◽  
Keiichi Shirase

This paper presents a simulation method for the power consumption of servo motors, focusing on the influence of vibrations on the motor efficiency. An apparatus consisting of two servo motors connected through a coupling was specifically designed for this study. The efficiency of the servo motor was experimentally investigated for several torque vibration levels imposed through the selection of the control parameters, and the torque vibration level was quantified through the standard deviation of the torque signal. The efficiency map characteristics for each torque oscillating level were determined. A numerical model of the apparatus clarifying the dependency of the coupling characteristics on the oscillating torque was developed, and the torque oscillation of the system was simulated. A model based on the measured motor efficiency maps and the torque oscillation level was developed to simulate the motor efficiency under several torque vibrating conditions. Finally, the power consumption of the motor was simulated based on the simulated efficiency and mechanical power. A balance of input, output, and loss powers was presented, and the experimental measurements were compared with the simulation results. The power consumption of the motor increased when the torque oscillated owing to vibrations, and the loss of power due to both oscillations and the loss of motor efficiency was quantified.


2022 ◽  
Vol 15 (0) ◽  
pp. 1-14
Author(s):  
BAI Xiao-quan ◽  
◽  
◽  
GUO Liang ◽  
MA Hong-cai ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Jian Deng ◽  
Shaoyong Liu ◽  
Cheng Xie ◽  
Kezhong Liu

The causes of maritime accidents are complex, mostly due to the coupling of four types of factors: human-ship-environmental-management. To effectively analyze the causes of maritime accidents in China, and reveal the risk coupling characteristics of accidents, this paper establishes the N-K model of maritime accident, and calculates and analyzes the four types of coupling of risk factors affecting safety in maritime traffic. This paper collects 922 maritime accidents that occurred in China from 2000 to 2020, and analyzes the location, type, and level of accidents and uses the trigger principle to describe the process of accidents. For marine and inland river accidents, this paper calculates the four types of coupling values of risk factors (single-factor coupling, two-factor coupling, three-factor coupling, four-factor coupling) for comparison and analysis. In addition, this paper calculates the coupling values of six typical maritime accidents of collision, sinking, contact, fire/explosion, stranding, grounding. According to the coupling values and the frequency of sub-factors, this paper analyzes the coupling characteristics of maritime accidents. The results show that in maritime accidents, as the number of risk factors participating in the coupling increases, the coupling value increases, and the multi-factor coupling is more likely to cause accidents. The overall situation of risk coupling causes of maritime accidents is basically consistent with inland river accidents, but they have their own characteristics in the specific degree of risk coupling and the dominant risk elements. In different types of maritime accidents, the risk coupling has different characteristics, and the dominant risk factors are also different.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012035
Author(s):  
M Mohammed

Abstract Numerical simulation of directional coupler that is based on the finite element method was conducted using the COMSOL Multiphysics software. The distributions of electric field and power flow of light propagates in two cores of directional coupler were analyzed. The results showed the dependencies of coupling length and maximum transfer power between cores on the cores separation and the wavelength, the characteristic of a subwavelength directional coupler can be used for photonic integrated circuits. Asymmetric directional coupler was also designed by changing in the device dimension, as the core width. The variation of coupling length with the core width were analysed. It was found that the power switching between cores is reduced when introducing a small difference in the one core width of directional coupler, followed by increased coupling length. At the same time, the coupling length can be decreased efficiently by increasing the difference in one core width; therefore, a directional coupler with large core width is more convenient to reduce the power switching between cores than the smaller core width. This study is useful for determining the coupling characteristics between the cores that may be used as a platform for future photonic integrated circuits in optical communication systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaoguang Yao ◽  
Lijun Meng ◽  
Peng Chu ◽  
Liang Yao

Liquid storage tanks are lifeline structures and strategically very important. Heavy damages or even collapse of these facilities subjected to strong earthquakes may cause disastrous consequences. In this paper, the seismic response of a multistage series liquid storage tank was simulated by a finite element method and verified by a scaled-down experiment. The structural flexibility of the tank and the liquid-structure coupling characteristics between the liquid and tank wall were considered in the research. A multimass-block and spring model was employed to be equivalent to the longitudinal vibration of the liquid in the storage tank. The relationships between the connection springs and the elements of the stiffness matrix were explicitly deduced. The seismic response analysis of a four-stage series liquid tank was carried out, and the acceleration response, the stress response of the tank, and the vertical vibration of the liquid were obtained. The experimental results are in good agreement with the simulation results, which verifies the effectiveness of the modeling method in this paper.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7435
Author(s):  
Amaia Berganza ◽  
Eneko Arrospide ◽  
Josu Amorebieta ◽  
Joseba Zubia ◽  
Gaizka Durana

In this paper we report on the theoretical analysis and fabrication of a dual-core microstructured polymer optical fiber (mPOF) and demonstrate how the coupling characteristics of a dual-core mPOF may be a key factor to assess the quality of the fabrication process. The coupling characteristics of this fiber have been tested and, for comparison purposes, simulations regarding the effects of inaccuracies during the manufacturing process were carried out to evaluate the fabrication quality. Results indicate that theoretical, simulation and experimental data are in good agreement, which highlights the uniformity of the microstructure along the fiber and the quality of its fabrication process. In fact, the manufactured mPOF reached a coupling efficiency up to 95.26%, which makes this mPOF appealing for applications in which highly efficient power couplers are required.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7460
Author(s):  
Xinyu Long ◽  
Mingwei Sun ◽  
Minnan Piao ◽  
Zengqiang Chen

Parafoil trajectory directly affects the power generation of a high-altitude wind power generation (HAWPG) device. Therefore, it is particularly important to optimize the parafoil trajectory and then to track it effectively. In this paper, the trajectory of the parafoil at high altitudes is optimized and tracked in a comprehensively parameterized manner. Both the complex dynamic characteristics of the parafoil and the dexterous demand of the high-altitude controller are considered. Firstly, the trajectory variables and control signals are parameterized as Lagrange polynomials in terms of the corresponding values at the selected nodes. Then, the Radau pseudospectral method (PSM) is employed to reformulate the original dynamic trajectory optimization problem into a static nonlinear programming (NLP) problem. By doing so, the parameterized optimal trajectory, which has the maximum net power generation, can be obtained. To attenuate the strong nonlinear, multivariable and coupling characteristics of the flexible parafoil, a bandwidth parameterized linear extended state observer (ESO) is used to estimate and reject these dynamics explicitly in a unified way. Finally, the simulation results demonstrate the effectiveness of the proposed parameterized trajectory optimization and control strategies. The main contribution of this study is that complicated nonlinear parafoil dynamics with a complex trajectory can be well regulated by a PID-type linear time-invariant controller, which is appealing for practitioners.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012014
Author(s):  
Yanhong Zhang ◽  
Meng Wang ◽  
Yingfu Yu

Abstract In view of the wide variety of telecom packages and the difficulty of adapting to the needs of users, this paper introduces a recommendation model for telecom packages based on deep forests. This paper first analyzes the telecom package data, and then optimizes the deep forest according to its characteristics such as discrete, continuous attribute interleaving and high coupling characteristics, including the use of decision trees to discretize continuous features and design continuous window sliding mechanism. These methods can improve the ability of deep forest combination high coupling features. Finally, the model optimization measures were verified by detail experiments. The experimental results show that the optimized deep forest can be applied to the telecom package recommendation field. Compared with other shallow models and unoptimized deep forest models, the deep forest model has increased the F1 score by 5%; after adjusting the deep forest hyper parameters, the F1 score can be increased by 2%.


Sign in / Sign up

Export Citation Format

Share Document