Traveling-wave based fault location with high grounding resistance for HVDC transmission lines

Author(s):  
Yuntao Zou ◽  
Xiuli Wang ◽  
Haitao Zhang ◽  
Chunyang Liu ◽  
Qian Zhou ◽  
...  
2014 ◽  
Vol 556-562 ◽  
pp. 2723-2727 ◽  
Author(s):  
Lu Hua Xing ◽  
Qing Chen ◽  
Bing Lei Xue

A fault location method for HVDC (High Voltage Direct Current) transmission lines is proposed in this paper, using voltages and currents measured at two terminals of dc lines in time domain. Fault traveling waves propagate from the fault point to both terminals along the faulted line. The position that the traveling wave head arrives at some moment after the fault can be used to calculate the fault location. To determine the arrival positions of traveling wave head at each time indirectly, propagation characteristic curves of traveling wave heads at local and the remote terminals are calculated with distribution currents using the stationary wavelet transform. The accuracy of fault location will not be affected by transition resistance and fault position. Simulation results show that the presented fault location method can achieve quick and accurate fault location on the whole line under probable operation modes of a bipolar HVDC transmission system.


Author(s):  
Congshan Li ◽  
Ping He ◽  
Feng Wang ◽  
Cunxiang Yang ◽  
Yukun Tao ◽  
...  

Background: A novel fault location method of HVDC transmission line based on a concentric relaxation principle is proposed in this paper. Methods: Due to the different position of fault, the instantaneous energy measured from rectifier and inverter are different, and the ratio k between them is the relationship to the fault location d. Through the analysis of amplitude-frequency characteristics, we found that the wave attenuation characteristic of low frequency in the traveling wave is stable, and the amplitude of energy is larger, so we get the instantaneous energy ratio by using the low-frequency data. By using the method of wavelet packet decomposition, the voltage traveling wave signal was decomposed. Results: Finally, calculate the value k. By using the data fitting, the relative function of k and d can be got, that is the fault location function. Conclusion: After an exhaustive evaluation process considering different fault locations, fault resistances, and noise on the unipolar DC transmission system, four-machine two-area AC/DC parallel system, and an actual complex grid, the method presented here showed a very accurate and robust behavior.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 186
Author(s):  
Aleena Swetapadma ◽  
Shobha Agarwal ◽  
Satarupa Chakrabarti ◽  
Soham Chakrabarti ◽  
Adel El-Shahat ◽  
...  

Most of the fault location methods in high voltage direct current (HVDC) transmission lines usemethods which require signals from both ends. It will be difficult to estimate fault location if the signal recorded is not correct due to communication problems.Hence a robust method is required which can locate fault with minimum error. In this work, faults are located using boosting ensembles in HVDC transmission lines based on single terminal direct current (DC) signals. The signals are processed to obtain input features that vary with the fault distance. These input features are obtained by taking maximum of half cycle current signals after fault and minimum of half cycle voltage signals after fault from the root mean square of DC signals. The input features are input to a boosting ensemble for estimating the location of fault. Boosting ensemble method attempts to correct the errors from the previous models and find outputs by combining all models. The boosting ensemble method has been also compared with the decision tree method and thebagging-based ensemble method. Fault locations are estimated using three methods and compared to obtain an optimal method. The boosting ensemble method has better performance than all the other methods in locating the faults. It also validated varying fault resistance, smoothing reactors, boundary faults, pole to ground faults and pole to pole faults. The advantage of the method is that no communication link is needed. Another advantage is that it allowsreach setting up to 99.9% and does not exhibitthe problem of over-fitting. Another advantage is that the percentage error in locating faults is within 1% and has a low realization cost. The proposed method can be implemented in HVDC transmission lines effectively as an alternative to overcome the drawbacks of traveling wave methods.


2011 ◽  
Vol 383-390 ◽  
pp. 5327-5333
Author(s):  
Jian Dong Duan ◽  
Wen Lu ◽  
Lin An

ABB and SIEMENS schemes based on the voltage change rate are the existing main protection for HVDC transmission lines. But the analysis and simulation tests show that these protection schemes may be unreliable as high impedance faults or as disturbances of above 2% noisy. The paper presents a new protection scheme of traveling wave current polarity comparison for a bipolar HVDC transmission line. The traveling wave current polarity is represented by the wavelet modulus maxima (WMM) of the fault current traveling wave. The traveling wave current polarity comparison protection scheme is evaluated by PSCAD. The extensive simulation studies show that the proposed scheme is reliable to distinguish internal faults from external faults of HVDC transmission lines. And the protection scheme is immune to high impedance faults and able to accurately detect the fault line under the electromagnetic coupling circumstance.


Sign in / Sign up

Export Citation Format

Share Document