2021 ◽  
Vol 13 (8) ◽  
pp. 1430
Author(s):  
Diego Lorente ◽  
Markus Limbach ◽  
Bernd Gabler ◽  
Héctor Esteban ◽  
Vicente E. Boria

In this work, a novel rotation approach for the antenna elements of a linear phased array is presented. The proposed method improves by up to 14 dB the cross-polarization level within the main beam by performing a sequential 90° rotation of the identical array elements, and achieving measured cross-polarization suppressions of 40 dB. This configuration is validated by means of simulation and measurements of a manufactured linear array of five dual-polarized cavity-box aperture coupled stacked patch antennas operating in L-Band, and considering both uniform amplitude and phase distribution and beamforming with amplitude tapering. The analysis is further extended by applying and comparing the proposed design with the 180° rotation and non-rotation topologies. This technique is expected to be used for the next generation L-Band Airborne Synthetic Aperture Radar Sensor of the German Aerospace Center (DLR).


2018 ◽  
Vol 10 (8) ◽  
pp. 1304 ◽  
Author(s):  
Yusupujiang Aimaiti ◽  
Fumio Yamazaki ◽  
Wen Liu

In earthquake-prone areas, identifying patterns of ground deformation is important before they become latent risk factors. As one of the severely damaged areas due to the 2011 Tohoku earthquake in Japan, Urayasu City in Chiba Prefecture has been suffering from land subsidence as a part of its land was built by a massive land-fill project. To investigate the long-term land deformation patterns in Urayasu City, three sets of synthetic aperture radar (SAR) data acquired during 1993–2006 from European Remote Sensing satellites (ERS-1/-2 (C-band)), during 2006–2010 from the Phased Array L-band Synthetic Aperture Radar onboard the Advanced Land Observation Satellite (ALOS PALSAR (L-band)) and from 2014–2017 from the ALOS-2 PALSAR-2 (L-band) were processed by using multitemporal interferometric SAR (InSAR) techniques. Leveling survey data were also used to verify the accuracy of the InSAR-derived results. The results from the ERS-1/-2, ALOS PALSAR and ALOS-2 PALSAR-2 data processing showed continuing subsidence in several reclaimed areas of Urayasu City due to the integrated effects of numerous natural and anthropogenic processes. The maximum subsidence rate of the period from 1993 to 2006 was approximately 27 mm/year, while the periods from 2006 to 2010 and from 2014 to 2017 were approximately 30 and 18 mm/year, respectively. The quantitative validation results of the InSAR-derived deformation trend during the three observation periods are consistent with the leveling survey data measured from 1993 to 2017. Our results further demonstrate the advantages of InSAR measurements as an alternative to ground-based measurements for land subsidence monitoring in coastal reclaimed areas.


2014 ◽  
Vol 150 ◽  
pp. 66-81 ◽  
Author(s):  
Jin-Woo Kim ◽  
Zhong Lu ◽  
John W. Jones ◽  
C.K. Shum ◽  
Hyongki Lee ◽  
...  

2004 ◽  
Vol 4 (2) ◽  
pp. 339-346 ◽  
Author(s):  
J. K. Weissel ◽  
K. R. Czuchlewski ◽  
Y. Kim

Abstract. We present new radar-based techniques for efficient identification of surface changes generated by lava and pyroclastic flows, and apply these to the 1996 eruption of Manam Volcano, Papua New Guinea. Polarimetric L- and P-band airborne synthetic aperture radar (SAR) data, along with a C-band DEM, were acquired over the volcano on 17 November 1996 during a major eruption sequence. The L-band data are analyzed for dominant scattering mechanisms on a per pixel basis using radar target decomposition techniques. A classification method is presented, and when applied to the L-band polarimetry, it readily distinguishes bare surfaces from forest cover over Manam volcano. In particular, the classification scheme identifies a post-1992 lava flow in NE Valley of Manam Island as a mainly bare surface and the underlying 1992 flow units as mainly vegetated surfaces. The Smithsonian's Global Volcanism Network reports allow us to speculate whether the bare surface is a flow dating from October or November in the early part of the late-1996 eruption sequence. This work shows that fully polarimetric SAR is sensitive to scattering mechanism changes caused by volcanic resurfacing processes such as lava and pyroclastic flows. By extension, this technique should also prove useful in mapping debris flows, ash deposits and volcanic landslides associated with major eruptions.


Sign in / Sign up

Export Citation Format

Share Document