german aerospace
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 94)

H-INDEX

11
(FIVE YEARS 4)

2022 ◽  
Vol 14 (2) ◽  
pp. 337
Author(s):  
Simon Baier ◽  
Nicolás Corti Meneses ◽  
Juergen Geist ◽  
Thomas Schneider

Aquatic reed beds provide important ecological functions, yet their monitoring by remote sensing methods remains challenging. In this study, we propose an approach of assessing aquatic reed stand status indicators based on data from the airborne photogrammetric 3K-system of the German Aerospace Center (DLR). By a Structure from Motion (SfM) approach, we computed stand surface models of aquatic reeds for each of the 14 areas of interest (AOI) investigated at Lake Chiemsee in Bavaria, Germany. Based on reed heights, we subsequently calculated the reed area, surface structure homogeneity and shape of the frontline. For verification, we compared 3K aquatic reed heights against reed stem metrics obtained from ground-based infield data collected at each AOI. The root mean square error (RMSE) for 1358 reference points from the 3K digital surface model and the field-measured data ranged between 39 cm and 104 cm depending on the AOI. Considering strong object movements due to wind and waves, superimposed by water surface effects such as sun glint altering 3K data, the results of the aquatic reed surface reconstruction were promising. Combining the parameter height, area, density and frontline shape, we finally calculated an indicator for status determination: the aquatic reed status index (aRSI), which is based on metrics, and thus is repeatable and transferable in space and time. The findings of our study illustrate that, even under the adverse conditions given by the environment of the aquatic reed, aerial photogrammetry can deliver appropriate results for deriving objective and reconstructable parameters for aquatic reed status (Phragmites australis) assessment.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012196
Author(s):  
S Fickler ◽  
T Welsch ◽  
M Schnellenbach-Held

Abstract The Institute for Structural Concrete (ISC) at the University of Duisburg-Essen and the Institute of Materials Research of the German Aerospace Center (DLR) developed a new lightweight concrete, called “High Performance Aerogel Concrete” (HPAC). HPAC is made by embedding of silica aerogel granules in a high strength cement matrix. It exhibits a remarkable relation between compressive strength and thermal conductivity. HPAC for the load bearing layer of double-leaf external walls contains approx. 50 vol% aerogel and has a compressive strength in the range of normal concrete (20 MPa – 30 MPa). Up to now, the compressive strength of each mixture was determined on three to six cubes or cylinders. The scattering of the results has not been investigated yet. For this reason, 30 test specimens of a 50 vol%-mixture have been produced in two batches. The results of the compressive strength tests were then statistically evaluated. The underlying statistical distribution was determined by the Anderson-Darling-Test. Subsequently the 5 % fractile values of the mixtures, which represent the characteristic concrete compressive strength, were determined.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 308
Author(s):  
Jonathan Hilger ◽  
Markus Raimund Ritter

The Pazy wing aeroelastic benchmark is a highly flexible wind tunnel model investigated in the Large Deflection Working Group as part of the Third Aeroelastic Prediction Workshop. Due to the design of the model, very large elastic deformations in the order of 50% span are generated at highest dynamic pressures and angles of attack in the wind tunnel. This paper presents static coupling simulations and stability analyses for selected onflow velocities and angles of attack. Therefore, an aeroelastic solver developed at the German Aerospace Center (DLR) is used for static coupling simulations, which couples a vortex lattice method with the commercial finite element solver MSC Nastran. For the stability analysis, a linearised aerodynamic model is derived analytically from the unsteady vortex lattice method and integrated with a modal structural model into a monolithic aeroelastic discrete-time state-space model. The aeroelastic stability is then determined by calculating the eigenvalues of the system’s dynamics matrix. It is shown that the stability of the wing in terms of flutter changes significantly with increasing deflection and is heavily influenced by the change in modal properties, i.e., structural eigenvalues and eigenvectors.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Axel Probst ◽  
Stefan Melber-Wilkending

Purpose The paper aims to assess the feasibility of locally turbulence-resolving flow simulations for a high-lift aircraft configuration near maximum lift. It addresses the aspects of proper grid design and explores the ability of the hybrid turbulence model and the numerical scheme to automatically select adequate modes in different flow regions. By comparison with experimental and numerical reference data, the study aims to provide insights into the predictive potential of the method for high-lift flows. Design/methodology/approach The paper applies numerical flow simulations using well-established tools such as DLR's (German Aerospace Center) TAU solver and the SOLAR grid generator to study “Improved Detached Delayed Eddy Simulations” of the Japan Aerospace Exploration Agency (JAXA) Standard Model at two angles of attack near maximum lift. The simulations apply a hybrid low-dissipation low-dispersion scheme and implicit time stepping with adequate temporal resolution. The simulation results, including pressure distributions and near-wall flow patterns, are assessed by comparison with experimental wind-tunnel data. Findings Apart from demonstrating the general feasibility of the numerical approach for complex high-lift flows, the results indicate somewhat improved maximum lift predictions compared to the Spalart–Allmaras model, which is consistent with a slightly closer agreement with measured pressure distributions and oil-flow pictures. However, the expected lift breakdown caused by an increasing inboard separation in the experiment is not well captured. Originality/value The study not only provides new insight into the feasibility and promising potential of hybrid turbulence-resolving methods for relevant high-lift aircraft flows but also indicates the need for further research on the numerical sensitivities, such as grid resolution or flow initialization.


Author(s):  
Song Liu ◽  
Pieter Valks ◽  
Steffen Beirle ◽  
Diego G. Loyola

AbstractSince its first confirmed case in December 2019, coronavirus disease 2019 (COVID-19) has become a worldwide pandemic with more than 90 million confirmed cases by January 2021. Countries around the world have enforced lockdown measures to prevent the spread of the virus, introducing a temporal change of air pollutants such as nitrogen dioxide (NO2) that are strongly related to transportation, industry, and energy. In this study, NO2 variations over regions with strong responses to COVID-19 are analysed using datasets from the Global Ozone Monitoring Experiment-2 (GOME-2) sensor aboard the EUMETSAT Metop satellites and TROPOspheric Monitoring Instrument (TROPOMI) aboard the EU/ESA Sentinel-5 Precursor satellite. The global GOME-2 and TROPOMI NO2 datasets are generated at the German Aerospace Center (DLR) using harmonized retrieval algorithms; potential influences of the long-term trend and seasonal cycle, as well as the short-term meteorological variation, are taken into account statistically. We present the application of the GOME-2 data to analyze the lockdown-related NO2 variations for morning conditions. Consistent NO2 variations are observed for the GOME-2 measurements and the early afternoon TROPOMI data: regions with strong social responses to COVID-19 in Asia, Europe, North America, and South America show strong NO2 reductions of $\sim $ ∼ 30–50% on average due to restriction of social and economic activities, followed by a gradual rebound with lifted restriction measures.


2021 ◽  
Vol 62 (9) ◽  
Author(s):  
Patrick M. Seltner ◽  
Sebastian Willems ◽  
Ali Gülhan ◽  
Eric C. Stern ◽  
Joseph M. Brock ◽  
...  

Abstract The influence of the flight attitude on aerodynamic coefficients and static stability of cylindrical bodies in hypersonic flows is of interest in understanding the re/entry of space debris, meteoroid fragments, launch-vehicle stages and other rotating objects. Experiments were therefore carried out in the hypersonic wind tunnel H2K at the German Aerospace Center (DLR) in Cologne. A free-flight technique was employed in H2K, which enables a continuous rotation of the cylinder without any sting interferences in a broad angular range from 0$$^{\circ }$$ ∘ to 90$$^{\circ }$$ ∘ . A high-speed stereo-tracking technique measured the model motion during free-flight and high-speed schlieren provided documentation of the flow topology. Aerodynamic coefficients were determined in careful post-processing, based on the measured 6-degrees-of-freedom (6DoF) motion data. Numerical simulations by NASA’s flow solvers Cart3D and US3D were performed for comparison purposes. As a result, the experimental and numerical data show a good agreement. The inclination of the cylinder strongly effects both the flowfield and aerodynamic loads. Experiments and simulations with concave cylinders showed marked difference in aerodynamic behavior due to the presence of a shock–shock interaction (SSI) near the middle of the model. Graphic abstract


2021 ◽  
Vol 13 (16) ◽  
pp. 3096
Author(s):  
Min Li ◽  
Yunbin Yuan

Observable-specific bias (OSB) parameterization allows observation biases belonging to various signal types to be flexibly addressed in the estimation of ionosphere and global navigation satellite system (GNSS) clock products. In this contribution, multi-GNSS OSBs are generated by two different methods. With regard to the first method, geometry-free (GF) linear combinations of the pseudorange and carrier-phase observations of a global multi-GNSS receiver network are formed for the extraction of OSB observables, and global ionospheric maps (GIMs) are employed to correct ionospheric path delays. Concerning the second method, satellite and receiver OSBs are converted directly from external differential code bias (DCB) products. Two assumptions are employed in the two methods to distinguish satellite- and receiver-specific OSB parameters. The first assumption is a zero-mean condition for each satellite OSB type and GNSS signal. The second assumption involves ionosphere-free (IF) linear combination signal constraints for satellites and receivers between two signals, which are compatible with the International GNSS Service (IGS) clock product. Agreement between the multi-GNSS satellite OSBs estimated by the two methods and those from the Chinese Academy of Sciences (CAS) is shown at levels of 0.15 ns and 0.1 ns, respectively. The results from observations spanning 6 months show that the multi-GNSS OSB estimates for signals in the same frequency bands may have very similar code bias characteristics, and the receiver OSB estimates present larger standard deviations (STDs) than the satellite OSB estimates. Additionally, the variations in the receiver OSB estimates are shown to be related to the types of receivers and antennas and the firmware version. The results also indicate that the root mean square (RMS) of the differences between the OSBs estimated based on the CAS- and German Aerospace Center (DLR)-provided DCB products are 0.32 ns for the global positioning system (GPS), 0.45 ns for the BeiDou navigation satellite system (BDS), 0.39 ns for GLONASS and 0.22 ns for Galileo.


2021 ◽  
Author(s):  
Bianca I. Schuchardt ◽  
Dennis Becker ◽  
Richard-Gregor Becker ◽  
Albert End ◽  
Thomas Gerz ◽  
...  
Keyword(s):  

Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 175
Author(s):  
Mohamed A. A. Ismail ◽  
Simon Wiedemann ◽  
Colin Bosch ◽  
Christoph Stuckmann

Electro-mechanical actuators (EMAs) are a primary actuation technology for unmanned aerial vehicles (UAVs). Intensive research has been conducted for designing and evaluating fault-tolerant EMAs for flight controls of UAVs to ensure their compliance with new airworthiness requirements for safe operation over civilian zones. The state-of-the-art research involves several fault-tolerant architectures for EMAs based on parallel electric motors or a single motor with internal fault-tolerant features. In this study, a fault-tolerant architecture is introduced, comprised of two serial electric motors driven by two isolated controllers and a health monitoring system. The procedures of developing various fault-tolerant features are discussed with a deep focus on designing health monitoring functions and evaluating their influence on the overall actuator stability and availability. This work has been conducted and evaluated based on operational data for ALAADy: a heavy gyrocopter-type UAV at DLR (German Aerospace Center).


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4641
Author(s):  
Jaya Shradha Fowdur ◽  
Marcus Baum ◽  
Frank Heymann

As autonomous navigation is being implemented in several areas including the maritime domain, the need for robust tracking is becoming more important for traffic situation awareness, assessment and monitoring. We present an online repository comprising three designated marine radar datasets from real-world measurement campaigns to be employed for target detection and tracking research purposes. The datasets have their respective reference positions on the basis of the Automatic Identification System (AIS). Together with the methods used for target detection and clustering, a novel baseline algorithm for an extended centroid-based multiple target tracking is introduced and explained. We compare the performance of our algorithm to its standard version on the datasets using the AIS references. The results obtained and some initial dataset specific analysis are presented. The datasets, under the German Aerospace Centre (DLR)’s terms and agreements, can be procured from the company website’s URL provided in the article.


Sign in / Sign up

Export Citation Format

Share Document