Effects of Facial Mood Expressions on Face Biometric Recognition System’s Reliability

Author(s):  
Mohammadreza Azimi
Author(s):  
James Eric Mason ◽  
Issa Traore ◽  
Isaac Woungang

2021 ◽  
Vol 11 (13) ◽  
pp. 5880
Author(s):  
Paloma Tirado-Martin ◽  
Raul Sanchez-Reillo

Nowadays, Deep Learning tools have been widely applied in biometrics. Electrocardiogram (ECG) biometrics is not the exception. However, the algorithm performances rely heavily on a representative dataset for training. ECGs suffer constant temporal variations, and it is even more relevant to collect databases that can represent these conditions. Nonetheless, the restriction in database publications obstructs further research on this topic. This work was developed with the help of a database that represents potential scenarios in biometric recognition as data was acquired in different days, physical activities and positions. The classification was implemented with a Deep Learning network, BioECG, avoiding complex and time-consuming signal transformations. An exhaustive tuning was completed including variations in enrollment length, improving ECG verification for more complex and realistic biometric conditions. Finally, this work studied one-day and two-days enrollments and their effects. Two-days enrollments resulted in huge general improvements even when verification was accomplished with more unstable signals. EER was improved in 63% when including a change of position, up to almost 99% when visits were in a different day and up to 91% if the user experienced a heartbeat increase after exercise.


Information ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 115
Author(s):  
Ahmad Saeed Mohammad ◽  
Dhafer Zaghar ◽  
Walaa Khalaf

With the development of mobile technology, the usage of media data has increased dramatically. Therefore, data reduction represents a research field to maintain valuable information. In this paper, a new scheme called Multi Chimera Transform (MCT) based on data reduction with high information preservation, which aims to improve the reconstructed data by producing three parameters from each 16×16 block of data, is proposed. MCT is a 2D transform that depends on constructing a codebook of 256 picked blocks from some selected images which have a low similarity. The proposed transformation was applied on solid and soft biometric modalities of AR database, giving high information preservation with small resulted file size. The proposed method produced outstanding performance compared with KLT and WT in terms of SSIM and PSNR. The highest SSIM was 0.87 for the proposed scheme MCT of the full image of AR database, while the existed method KLT and WT had 0.81 and 0.68, respectively. In addition, the highest PSNR was 27.23 dB for the proposed scheme on warp facial image of AR database, while the existed methods KLT and WT had 24.70 dB and 21.79 dB, respectively.


Author(s):  
Min Wang ◽  
Kathryn Kasmarik ◽  
Anastasios Bezerianos ◽  
Kay Chen Tan ◽  
Hussein Abbass

Sign in / Sign up

Export Citation Format

Share Document