A Study on the Effect of Distinct Adjacency Matrices for Graph Signal Denoising

Author(s):  
Anastasia Pentari ◽  
George Tzagkarakis ◽  
Kostas Marias ◽  
Panagiotis Tsakalides
2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Sho Kubota ◽  
Etsuo Segawa ◽  
Tetsuji Taniguchi

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1522
Author(s):  
Anna Concas ◽  
Lothar Reichel ◽  
Giuseppe Rodriguez ◽  
Yunzi Zhang

The power method is commonly applied to compute the Perron vector of large adjacency matrices. Blondel et al. [SIAM Rev. 46, 2004] investigated its performance when the adjacency matrix has multiple eigenvalues of the same magnitude. It is well known that the Lanczos method typically requires fewer iterations than the power method to determine eigenvectors with the desired accuracy. However, the Lanczos method demands more computer storage, which may make it impractical to apply to very large problems. The present paper adapts the analysis by Blondel et al. to the Lanczos and restarted Lanczos methods. The restarted methods are found to yield fast convergence and to require less computer storage than the Lanczos method. Computed examples illustrate the theory presented. Applications of the Arnoldi method are also discussed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1591
Author(s):  
Ruixia Liu ◽  
Minglei Shu ◽  
Changfang Chen

The electrocardiogram (ECG) is widely used for the diagnosis of heart diseases. However, ECG signals are easily contaminated by different noises. This paper presents efficient denoising and compressed sensing (CS) schemes for ECG signals based on basis pursuit (BP). In the process of signal denoising and reconstruction, the low-pass filtering method and alternating direction method of multipliers (ADMM) optimization algorithm are used. This method introduces dual variables, adds a secondary penalty term, and reduces constraint conditions through alternate optimization to optimize the original variable and the dual variable at the same time. This algorithm is able to remove both baseline wander and Gaussian white noise. The effectiveness of the algorithm is validated through the records of the MIT-BIH arrhythmia database. The simulations show that the proposed ADMM-based method performs better in ECG denoising. Furthermore, this algorithm keeps the details of the ECG signal in reconstruction and achieves higher signal-to-noise ratio (SNR) and smaller mean square error (MSE).


2001 ◽  
Vol 325 (1-3) ◽  
pp. 191-207
Author(s):  
Wai-Shun Cheung ◽  
Chi-Kwong Li ◽  
D.D. Olesky ◽  
P. van den Driessche

Sign in / Sign up

Export Citation Format

Share Document