Learning Representations from Healthcare Time Series Data for Unsupervised Anomaly Detection

Author(s):  
Joao Pereira ◽  
Margarida Silveira
Author(s):  
Chuxu Zhang ◽  
Dongjin Song ◽  
Yuncong Chen ◽  
Xinyang Feng ◽  
Cristian Lumezanu ◽  
...  

Nowadays, multivariate time series data are increasingly collected in various real world systems, e.g., power plants, wearable devices, etc. Anomaly detection and diagnosis in multivariate time series refer to identifying abnormal status in certain time steps and pinpointing the root causes. Building such a system, however, is challenging since it not only requires to capture the temporal dependency in each time series, but also need encode the inter-correlations between different pairs of time series. In addition, the system should be robust to noise and provide operators with different levels of anomaly scores based upon the severity of different incidents. Despite the fact that a number of unsupervised anomaly detection algorithms have been developed, few of them can jointly address these challenges. In this paper, we propose a Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED), to perform anomaly detection and diagnosis in multivariate time series data. Specifically, MSCRED first constructs multi-scale (resolution) signature matrices to characterize multiple levels of the system statuses in different time steps. Subsequently, given the signature matrices, a convolutional encoder is employed to encode the inter-sensor (time series) correlations and an attention based Convolutional Long-Short Term Memory (ConvLSTM) network is developed to capture the temporal patterns. Finally, based upon the feature maps which encode the inter-sensor correlations and temporal information, a convolutional decoder is used to reconstruct the input signature matrices and the residual signature matrices are further utilized to detect and diagnose anomalies. Extensive empirical studies based on a synthetic dataset and a real power plant dataset demonstrate that MSCRED can outperform state-ofthe-art baseline methods.


Author(s):  
Bin Zhou ◽  
Shenghua Liu ◽  
Bryan Hooi ◽  
Xueqi Cheng ◽  
Jing Ye

Given a large-scale rhythmic time series containing mostly normal data segments (or `beats'), can we learn how to detect anomalous beats in an effective yet efficient way? For example, how can we detect anomalous beats from electrocardiogram (ECG) readings? Existing approaches either require excessively high amounts of labeled and balanced data for classification, or rely on less regularized reconstructions, resulting in lower accuracy in anomaly detection. Therefore, we propose BeatGAN, an unsupervised anomaly detection algorithm for time series data. BeatGAN outputs explainable results to pinpoint the anomalous time ticks of an input beat, by comparing them to adversarially generated beats. Its robustness is guaranteed by its regularization of reconstruction error using an adversarial generation approach, as well as data augmentation using time series warping. Experiments show that BeatGAN accurately and efficiently detects anomalous beats in ECG time series, and routes doctors' attention to anomalous time ticks, achieving accuracy of nearly 0.95 AUC, and very fast inference (2.6 ms per beat). In addition, we show that BeatGAN accurately detects unusual motions from multivariate motion-capture time series data, illustrating its generality.


2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1633
Author(s):  
Elena-Simona Apostol ◽  
Ciprian-Octavian Truică ◽  
Florin Pop ◽  
Christian Esposito

Due to the exponential growth of the Internet of Things networks and the massive amount of time series data collected from these networks, it is essential to apply efficient methods for Big Data analysis in order to extract meaningful information and statistics. Anomaly detection is an important part of time series analysis, improving the quality of further analysis, such as prediction and forecasting. Thus, detecting sudden change points with normal behavior and using them to discriminate between abnormal behavior, i.e., outliers, is a crucial step used to minimize the false positive rate and to build accurate machine learning models for prediction and forecasting. In this paper, we propose a rule-based decision system that enhances anomaly detection in multivariate time series using change point detection. Our architecture uses a pipeline that automatically manages to detect real anomalies and remove the false positives introduced by change points. We employ both traditional and deep learning unsupervised algorithms, in total, five anomaly detection and five change point detection algorithms. Additionally, we propose a new confidence metric based on the support for a time series point to be an anomaly and the support for the same point to be a change point. In our experiments, we use a large real-world dataset containing multivariate time series about water consumption collected from smart meters. As an evaluation metric, we use Mean Absolute Error (MAE). The low MAE values show that the algorithms accurately determine anomalies and change points. The experimental results strengthen our assumption that anomaly detection can be improved by determining and removing change points as well as validates the correctness of our proposed rules in real-world scenarios. Furthermore, the proposed rule-based decision support systems enable users to make informed decisions regarding the status of the water distribution network and perform effectively predictive and proactive maintenance.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Hajar Homayouni ◽  
Indrakshi Ray ◽  
Sudipto Ghosh ◽  
Shlok Gondalia ◽  
Michael G. Kahn

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 120043-120065
Author(s):  
Kukjin Choi ◽  
Jihun Yi ◽  
Changhwa Park ◽  
Sungroh Yoon

Sign in / Sign up

Export Citation Format

Share Document