scholarly journals A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data

Author(s):  
Chuxu Zhang ◽  
Dongjin Song ◽  
Yuncong Chen ◽  
Xinyang Feng ◽  
Cristian Lumezanu ◽  
...  

Nowadays, multivariate time series data are increasingly collected in various real world systems, e.g., power plants, wearable devices, etc. Anomaly detection and diagnosis in multivariate time series refer to identifying abnormal status in certain time steps and pinpointing the root causes. Building such a system, however, is challenging since it not only requires to capture the temporal dependency in each time series, but also need encode the inter-correlations between different pairs of time series. In addition, the system should be robust to noise and provide operators with different levels of anomaly scores based upon the severity of different incidents. Despite the fact that a number of unsupervised anomaly detection algorithms have been developed, few of them can jointly address these challenges. In this paper, we propose a Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED), to perform anomaly detection and diagnosis in multivariate time series data. Specifically, MSCRED first constructs multi-scale (resolution) signature matrices to characterize multiple levels of the system statuses in different time steps. Subsequently, given the signature matrices, a convolutional encoder is employed to encode the inter-sensor (time series) correlations and an attention based Convolutional Long-Short Term Memory (ConvLSTM) network is developed to capture the temporal patterns. Finally, based upon the feature maps which encode the inter-sensor correlations and temporal information, a convolutional decoder is used to reconstruct the input signature matrices and the residual signature matrices are further utilized to detect and diagnose anomalies. Extensive empirical studies based on a synthetic dataset and a real power plant dataset demonstrate that MSCRED can outperform state-ofthe-art baseline methods.

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1633
Author(s):  
Elena-Simona Apostol ◽  
Ciprian-Octavian Truică ◽  
Florin Pop ◽  
Christian Esposito

Due to the exponential growth of the Internet of Things networks and the massive amount of time series data collected from these networks, it is essential to apply efficient methods for Big Data analysis in order to extract meaningful information and statistics. Anomaly detection is an important part of time series analysis, improving the quality of further analysis, such as prediction and forecasting. Thus, detecting sudden change points with normal behavior and using them to discriminate between abnormal behavior, i.e., outliers, is a crucial step used to minimize the false positive rate and to build accurate machine learning models for prediction and forecasting. In this paper, we propose a rule-based decision system that enhances anomaly detection in multivariate time series using change point detection. Our architecture uses a pipeline that automatically manages to detect real anomalies and remove the false positives introduced by change points. We employ both traditional and deep learning unsupervised algorithms, in total, five anomaly detection and five change point detection algorithms. Additionally, we propose a new confidence metric based on the support for a time series point to be an anomaly and the support for the same point to be a change point. In our experiments, we use a large real-world dataset containing multivariate time series about water consumption collected from smart meters. As an evaluation metric, we use Mean Absolute Error (MAE). The low MAE values show that the algorithms accurately determine anomalies and change points. The experimental results strengthen our assumption that anomaly detection can be improved by determining and removing change points as well as validates the correctness of our proposed rules in real-world scenarios. Furthermore, the proposed rule-based decision support systems enable users to make informed decisions regarding the status of the water distribution network and perform effectively predictive and proactive maintenance.


2021 ◽  
Vol 100 ◽  
pp. 106919
Author(s):  
Jinbo Li ◽  
Hesam Izakian ◽  
Witold Pedrycz ◽  
Iqbal Jamal

Author(s):  
Roy Assaf ◽  
Anika Schumann

We demonstrate that CNN deep neural networks can not only be used for making predictions based on multivariate time series data, but also for explaining these predictions. This is important for a number of applications where predictions are the basis for decisions and actions. Hence, confidence in the prediction result is crucial. We design a two stage convolutional neural network architecture which uses particular kernel sizes. This allows us to utilise gradient based techniques for generating saliency maps for both the time dimension and the features. These are then used for explaining which features during which time interval are responsible for a given prediction, as well as explaining during which time intervals was the joint contribution of all features most important for that prediction. We demonstrate our approach for predicting the average energy production of photovoltaic power plants and for explaining these predictions.


Author(s):  
Zipeng Chen ◽  
Qianli Ma ◽  
Zhenxi Lin

Multi-scale information is crucial for modeling time series. Although most existing methods consider multiple scales in the time-series data, they assume all kinds of scales are equally important for each sample, making them unable to capture the dynamic temporal patterns of time series. To this end, we propose Time-Aware Multi-Scale Recurrent Neural Networks (TAMS-RNNs), which disentangle representations of different scales and adaptively select the most important scale for each sample at each time step. First, the hidden state of the RNN is disentangled into multiple independently updated small hidden states, which use different update frequencies to model time-series multi-scale information. Then, at each time step, the temporal context information is used to modulate the features of different scales, selecting the most important time-series scale. Therefore, the proposed model can capture the multi-scale information for each time series at each time step adaptively. Extensive experiments demonstrate that the model outperforms state-of-the-art methods on multivariate time series classification and human motion prediction tasks. Furthermore, visualized analysis on music genre recognition verifies the effectiveness of the model.


2021 ◽  
Author(s):  
Ilan Sousa Figueirêdo ◽  
Tássio Farias Carvalho ◽  
Wenisten José Dantas Silva ◽  
Lílian Lefol Nani Guarieiro ◽  
Erick Giovani Sperandio Nascimento

Abstract Detection of anomalous events in practical operation of oil and gas (O&G) wells and lines can help to avoid production losses, environmental disasters, and human fatalities, besides decreasing maintenance costs. Supervised machine learning algorithms have been successful to detect, diagnose, and forecast anomalous events in O&G industry. Nevertheless, these algorithms need a large quantity of annotated dataset and labelling data in real world scenarios is typically unfeasible because of exhaustive work of experts. Therefore, as unsupervised machine learning does not require an annotated dataset, this paper intends to perform a comparative evaluation performance of unsupervised learning algorithms to support experts for anomaly detection and pattern recognition in multivariate time-series data. So, the goal is to allow experts to analyze a small set of patterns and label them, instead of analyzing large datasets. This paper used the public 3W database of three offshore naturally flowing wells. The experiment used real data of production of O&G from underground reservoirs with the following anomalous events: (i) spurious closure of Downhole Safety Valve (DHSV) and (ii) quick restriction in Production Choke (PCK). Six unsupervised machine learning algorithms were assessed: Cluster-based Algorithm for Anomaly Detection in Time Series Using Mahalanobis Distance (C-AMDATS), Luminol Bitmap, SAX-REPEAT, k-NN, Bootstrap, and Robust Random Cut Forest (RRCF). The comparison evaluation of unsupervised learning algorithms was performed using a set of metrics: accuracy (ACC), precision (PR), recall (REC), specificity (SP), F1-Score (F1), Area Under the Receiver Operating Characteristic Curve (AUC-ROC), and Area Under the Precision-Recall Curve (AUC-PRC). The experiments only used the data labels for assessment purposes. The results revealed that unsupervised learning successfully detected the patterns of interest in multivariate data without prior annotation, with emphasis on the C-AMDATS algorithm. Thus, unsupervised learning can leverage supervised models through the support given to data annotation.


Sign in / Sign up

Export Citation Format

Share Document