change point detection
Recently Published Documents


TOTAL DOCUMENTS

887
(FIVE YEARS 348)

H-INDEX

31
(FIVE YEARS 6)

Author(s):  
Sourish Gunesh Dhekane ◽  
Shivam Tiwari ◽  
Manan Sharma ◽  
Dip Sankar Banerjee

2021 ◽  
Vol 6 ◽  
pp. 140-149
Author(s):  
Renee Rios ◽  
Chris Childs ◽  
Scott Smith ◽  
Newell Washburn ◽  
Kimberly Kurtis

The massive scale of concrete construction constrains the raw materials’ feedstocks that can be considered – requiring both universal abundance but also economical and energy-efficient processing. While significant improvements– from more efficient cement and concrete production to increased service life – have been realized over the past decades through traditional research paradigms, non-incremental innovations are necessary now to meet increasingly urgent needs, at a time when innovations in materials create even greater complexity. Data science is revolutionizing the rate of discovery and accelerating the rate of innovation for material systems. This review addresses machine learning and other data analytical techniques which utilize various forms of variable representation for cementitious systems. These techniques include those guided by physicochemical and cheminformatics approaches to chemical admixture design, use of materials informatics to develop process-structure-property linkages for quantifying increased service life, and change-point detection for assessing pozzolanicity in candidate supplementary cementitious materials (SCMs). These latent variables, coupled with approaches to dimensionality reduction driven both algorithmically as well as through domain knowledge, provide robust feature representation for cement-based materials and allow for more accurate models and greater generalization capability, resulting in a powerful design tool for infrastructure materials.


Author(s):  
Kamil Faber ◽  
Roberto Corizzo ◽  
Bartlomiej Sniezynski ◽  
Michael Baron ◽  
Nathalie Japkowicz

2021 ◽  
Author(s):  
Francesco Cannarile ◽  
Stefano Montoli ◽  
Giuseppe Giliberto ◽  
Mauro Suardi ◽  
Benedetta Di Bari ◽  
...  

Abstract Lost circulation is a challenging aspect during drilling operations as uncontrolled flow of wellbore fluids into formation can expose rig personnel and environment to risks. Further, the time required to regain the circulation of drilling fluid typically results in unplanned Non-Productive Time (NPT) causing undesired amplified drilling cost. Thus, it is of primary importance to support drilling supervisors with accurate and effective detection tools for safe and economic drilling operations. In this framework, a novel lost circulation intelligent detection system is proposed which relies on the simultaneous identification of decreasing trends in the paddle mud flow-out and standpipe pressure signals, at constant mud flow-in rate. First, mud flow-out and standpipe pressure signals underlie cubic-spline-based smoothing step to remove background noise caused by the measurement instrument and the intrinsic variability of the drilling environment. To identify structural changes in the considered signals, a nonparametric kernel-based change point detection algorithm is employed. Finally, an alarm is raised if flow-out and standpipe pressure decreasing trends have been detected and their negative variations are below prefixed threshold values. The proposed intelligent lost circulation detection system has been verified with respect to historical field data recorded from several Eni wells located in different countries. Results show that the proposed system satisfactorily and reliably detects both partial and total lost circulation events. Further, its integration with already existing Eni NPT prediction models has led to a significant improvement in terms of events correctly triggered.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1626
Author(s):  
Alexandra Piryatinska ◽  
Boris Darkhovsky

We consider a retrospective change-point detection problem for multidimensional time series of arbitrary nature (in particular, panel data). Change-points are the moments at which the changes in generating mechanism occur. Our method is based on the new theory of ϵ-complexity of individual continuous vector functions and is model-free. We present simulation results confirming the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document