Particle Filter Track-Before-Detect for Target Detection and Tracking from Marine Radar Data

Author(s):  
Zaynab Guerraou ◽  
Ali Khenchaf ◽  
Fabrice Comblet ◽  
Marc Leouffre ◽  
Olivier Lacrouts
Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1577 ◽  
Author(s):  
Bo Yan ◽  
Xu Yang Zhao ◽  
Na Xu ◽  
Yu Chen ◽  
Wen Bo Zhao

A grey wolf optimization-based track-before-detect (GWO-TBD) method is developed for extended target detection and tracking. The aim of the GWO-TBD is tracking weak and maneuvering extended targets in a cluttered environment using the measurement points of an air surveillance radar. The optimal solution is the trajectory constituted by the points of an extended target. At the beginning of the GWO-TBD, the measurements of each scan are clustered into alternative sets. Secondly, closely sets are associated for tracklets. Each tracklet equals a candidate solution. Thirdly, the tracklets are further associated iteratively to find a better solution. An improved GWO algorithm is developed in the iteration for removal of unappreciated solution and acceleration of convergence. After the iteration of several generations, the optimal solution can be achieved, i.e. trajectory of an extended target. Both the real data and synthetic data are performed with the GWO-TBD and several existing algorithms in this work. Result infers that the GWO-TBD is superior to the others in detecting and tracking maneuvering targets. Meanwhile, much less prior information is necessary in the GWO-TBD. It makes the approach is engineering friendly.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Yijun Chen ◽  
Qun Zhang ◽  
Ying Luo ◽  
Tat Soon Yeo

The micromotion feature of space target provides an effective approach for target recognition. The existing micromotion feature extraction is implemented after target detection and tracking; thus the radar resources need to be allocated for target detection, tracking, and feature extraction, successively. If the feature extraction can be implemented by utilizing the target detecting and tracking pulses, the radar efficiency can be improved. In this paper, by establishing a feedback loop between micromotion feature extraction and track-before-detect (TBD) of target, a novel feature extraction method for space target is proposed. The TBD technology is utilized to obtain the range-slow-time curves of target scatterers. Then, micromotion feature parameters are estimated from the acquired curve information. In return, the state transition set of TBD is updated adaptively according to these extracted feature parameters. As a result, the micromotion feature parameters of space target can be extracted concurrently with implementing the target detecting and tracking. Simulation results show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document