detection and tracking
Recently Published Documents


TOTAL DOCUMENTS

3732
(FIVE YEARS 927)

H-INDEX

74
(FIVE YEARS 12)

Author(s):  
Chandan Kumar

Abstract: Computer vision is a process by which we can understand how the images and videos are stored and manipulated, also it helps in the process of retrieving data from either images or videos. Computer Vision is part of Artificial Intelligence. Computer-Vision plays a major role in Autonomous cars, Object detections, robotics, object tracking, etc. OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in the commercial products. It comes with a highly improved deep learning (dnn ) module. This module now supports a number of deep learning frameworks, including Caffe, TensorFlow, and Torch/PyTorch. This does allow us to take our models trained using dedicated deep learning libraries/tools and then efficiently use them directly inside our OpenCV scripts. MediaPipe is a framework mainly used for building audio, video, or any time series data. With the help of the MediaPipe framework, we can build very impressive pipelines for different media processing functions like Multi-hand Tracking, Face Detection, Object Detection and Tracking, etc.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Weishi Chen ◽  
Yifeng Huang ◽  
Xianfeng Lu ◽  
Jie Zhang

Purpose This paper aims to review the critical technology development of avian radar system at airports. Design/methodology/approach After the origin of avian radar technology is discussed, the target characteristics of flying birds are analyzed, including the target echo amplitude, flight speed, flight height, trajectory and micro-Doppler. Four typical airport avian radar systems of Merlin, Accipiter, Robin and CAST are introduced. The performance of different modules such as antenna, target detection and tracking, target recognition and classification, analysis of bird information together determines the detection ability of avian radar. The performances and key technologies of the ubiquitous avian radar are summarized and compared with other systems, and their applications, deployment modes, as well as their advantages and disadvantages are introduced and analyzed. Findings The ubiquitous avian radar achieves the long-time integration of target echoes, which greatly improves detection and classification ability of the targets of birds or drones, even under strong background clutter at airport. In addition, based on the big data of bird situation accumulated by avian radar, the rules of bird activity around the airport can be mined to guide the bird avoidance work. Originality/value This paper presented a novel avian radar system based on ubiquitous digital radar technology. The authors’ experience has confirmed that this system can be effective for airport bird strike prevention and management. In the future, the avian radar system will see continued improvement in both software and hardware, as the system is designed to be easily extensible.


2022 ◽  
Author(s):  
Shikha Bharati ◽  
Km Anjaly ◽  
Shivani Thoidingjam ◽  
A B Tiku

With the realization of the role of exosomes in diseases especially cancer, exosome research is gaining popularity in biomedical sciences. To understand exosome biology, their labelling and tracking studies are important. New and improved methods of exosome labelling for detection and tracking of exosomes need to be developed to harness their therapeutic and diagnostic potential. In this paper, we report a novel, simple and effective method of labelling and detecting exosomes using Oil red O (ORO) which is a dye commonly used for lipid staining. Using ORO is a cost effective and easy approach with intense red colouration of stained exosomes. Further, the issues faced with commonly used lipophilic dyes for exosomes labelling such as long term persistence of dyes, aggregation and micelle formation of dyes, difficulty to distinguish dye particles from labelled exosomes and detection of large aggregates of dye or dye-exosome are not seen with ORO dye. This method shows good labelling efficiency of exosomes with very sensitive detection and real-time tracking of the cellular uptake of exosomes.


Author(s):  
Can Cuhadar ◽  
Hoi Nok Tsao

A prominent problem in computer vision is occlusion, which occurs when an object’s key features temporarily disappear behind another crossing body, causing the computer to struggle with image detection. While the human brain is capable of compensating for the invisible parts of the blocked object, computers lack such scene interpretation skills. Cloud computing using convolutional neural networks is typically the method of choice for handling such a scenario. However, for mobile applications where energy consumption and computational costs are critical, cloud computing should be minimized. In this regard, we propose a computer vision sensor capable of efficiently detecting and tracking covered objects without heavy reliance on occlusion handling software. Our edge-computing sensor accomplishes this task by self-learning the object prior to the moment of occlusion and uses this information to “reconstruct” the blocked invisible features. Furthermore, the sensor is capable of tracking a moving object by predicting the path it will most likely take while travelling out of sight behind an obstructing body. Finally, sensor operation is demonstrated by exposing the device to various simulated occlusion events. Keywords:  Computer vision, occlusion handling, edge computing, object tracking, dye sensitized solar cell. Corresponding author Email: [email protected] 


Author(s):  
Madison Harasyn ◽  
Wayne S. Chan ◽  
Emma L. Ausen ◽  
David G. Barber

Aerial imagery surveys are commonly used in marine mammal research to determine population size, distribution and habitat use. Analysis of aerial photos involves hours of manually identifying individuals present in each image and converting raw counts into useable biological statistics. Our research proposes the use of deep learning algorithms to increase the efficiency of the marine mammal research workflow. To test the feasibility of this proposal, the existing YOLOv4 convolutional neural network model was trained to detect belugas, kayaks and motorized boats in oblique drone imagery, collected from a stationary tethered system. Automated computer-based object detection achieved the following precision and recall, respectively, for each class: beluga = 74%/72%; boat = 97%/99%; and kayak = 96%/96%. We then tested the performance of computer vision tracking of belugas and manned watercraft in drone videos using the DeepSORT tracking algorithm, which achieved a multiple-object tracking accuracy (MOTA) ranging from 37% – 88% and multiple object tracking precision (MOTP) between 63% – 86%. Results from this research indicate that deep learning technology can detect and track features more consistently than human annotators, allowing for larger datasets to be processed within a fraction of the time while avoiding discrepancies introduced by labeling fatigue or multiple human annotators.


2022 ◽  
Author(s):  
Chester Dolph ◽  
Cyrus Minwalla ◽  
Thomas Lombaerts ◽  
Vahram Stepanyan ◽  
Khan Iftekharuddin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document