An approach to verifying concurrent systems-a medical information bus (MIB) case study

Author(s):  
P. Curran ◽  
K. Norrie
2021 ◽  
Vol 43 (1) ◽  
pp. 1-46
Author(s):  
David Sanan ◽  
Yongwang Zhao ◽  
Shang-Wei Lin ◽  
Liu Yang

To make feasible and scalable the verification of large and complex concurrent systems, it is necessary the use of compositional techniques even at the highest abstraction layers. When focusing on the lowest software abstraction layers, such as the implementation or the machine code, the high level of detail of those layers makes the direct verification of properties very difficult and expensive. It is therefore essential to use techniques allowing to simplify the verification on these layers. One technique to tackle this challenge is top-down verification where by means of simulation properties verified on top layers (representing abstract specifications of a system) are propagated down to the lowest layers (that are an implementation of the top layers). There is no need to say that simulation of concurrent systems implies a greater level of complexity, and having compositional techniques to check simulation between layers is also desirable when seeking for both feasibility and scalability of the refinement verification. In this article, we present CSim 2 a (compositional) rely-guarantee-based framework for the top-down verification of complex concurrent systems in the Isabelle/HOL theorem prover. CSim 2 uses CSimpl, a language with a high degree of expressiveness designed for the specification of concurrent programs. Thanks to its expressibility, CSimpl is able to model many of the features found in real world programming languages like exceptions, assertions, and procedures. CSim 2 provides a framework for the verification of rely-guarantee properties to compositionally reason on CSimpl specifications. Focusing on top-down verification, CSim 2 provides a simulation-based framework for the preservation of CSimpl rely-guarantee properties from specifications to implementations. By using the simulation framework, properties proven on the top layers (abstract specifications) are compositionally propagated down to the lowest layers (source or machine code) in each concurrent component of the system. Finally, we show the usability of CSim 2 by running a case study over two CSimpl specifications of an Arinc-653 communication service. In this case study, we prove a complex property on a specification, and we use CSim 2 to preserve the property on lower abstraction layers.


Author(s):  
Gilad J. Kuperman ◽  
Reed M. Gardner ◽  
T. Allan Pryor

Author(s):  
Anna Babu ◽  
Sonal Ayyappan

Health care institution demands exchange of medical images of number of patients to sought opinions from different experts. In order to reduce storage and for secure transmission of the medical images, Crypto-Watermarking techniques are adopted. The system is considered to be combinations of encryption technique with watermarking or steganography means adopted for safe transfer of medical images along with embedding of optional medical information. The Digital Watermarking is the process of embedding data to multimedia content. This can be done in spatial as well as frequency domain of the cover image to be transmitted. The robustness against attacks is ensured while embedding the encrypted data into transform domain, the encrypted data can be any secret key for the content recovery or patient record or the image itself. This chapter presents basic aspects of crypto-watermarking technique, as an application. It gives a detailed assessment on different approaches of crypto-watermarking for secure transmission of medical images and elaborates a case study on it.


Sign in / Sign up

Export Citation Format

Share Document