Integrating Tabu Search in Particle Swarm Optimization for the frequency assignment problem

2016 ◽  
Vol 13 (3) ◽  
pp. 137-155 ◽  
Author(s):  
Houssem Eddine Hadji ◽  
Malika Babes
2010 ◽  
Vol 40-41 ◽  
pp. 410-418
Author(s):  
Ting Ting Zhou ◽  
Ying Zheng ◽  
Ming Chen

Since the usable range of the frequency spectrum is limited, the frequency assignment problem (FAP) is important in mobile telephone communication. In this paper, according to the characteristics of engineering- oriented FAP, an engineering-oriented hybrid genetic algorithm (EHGA) based on traditional genetic algorithm (TGA) is proposed, combined with particle swarm optimization (PSO) and simulated annealing (SA). The results obtained by the simulation to a real-word FAP case in GSM show that the algorithm we proposed is a better approach to solve the engineering-oriented FAP.


Author(s):  
Tabitha James ◽  
Cesar Rego

This paper introduces a new path relinking algorithm for the well-known quadratic assignment problem (QAP) in combinatorial optimization. The QAP has attracted considerable attention in research because of its complexity and its applicability to many domains. The algorithm presented in this study employs path relinking as a solution combination method incorporating a multistart tabu search algorithm as an improvement method. The resulting algorithm has interesting similarities and contrasts with particle swarm optimization methods. Computational testing indicates that this algorithm produces results that rival the best QAP algorithms. The authors additionally conduct an analysis disclosing how different strategies prove more or less effective depending on the landscapes of the problems to which they are applied. This analysis lays a foundation for developing more effective future QAP algorithms, both for methods based on path relinking and tabu search, and for hybrids of such methods with related processes found in particle swarm optimization.


2011 ◽  
Vol 2 (2) ◽  
pp. 52-70
Author(s):  
Tabitha James ◽  
Cesar Rego

This paper introduces a new path relinking algorithm for the well-known quadratic assignment problem (QAP) in combinatorial optimization. The QAP has attracted considerable attention in research because of its complexity and its applicability to many domains. The algorithm presented in this study employs path relinking as a solution combination method incorporating a multistart tabu search algorithm as an improvement method. The resulting algorithm has interesting similarities and contrasts with particle swarm optimization methods. Computational testing indicates that this algorithm produces results that rival the best QAP algorithms. The authors additionally conduct an analysis disclosing how different strategies prove more or less effective depending on the landscapes of the problems to which they are applied. This analysis lays a foundation for developing more effective future QAP algorithms, both for methods based on path relinking and tabu search, and for hybrids of such methods with related processes found in particle swarm optimization.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuyan He ◽  
Aihu Wang ◽  
Hailiang Su ◽  
Mengyao Wang

Outbound container storage location assignment problem (OCSLAP) could be defined as how a series of outbound containers should be stacked in the yard according to certain assignment rules so that the outbound process could be facilitated. Considering the NP-hard nature of OCSLAP, a novel particle swarm optimization (PSO) method is proposed. The contributions of this paper could be outlined as follows: First, a neighborhood-based mutation operator is introduced to enrich the diversity of the population to strengthen the exploitation ability of the proposed algorithm. Second, a mechanism to transform the infeasible solutions into feasible ones through the lowest stack principle is proposed. Then, in the case of trapping into the local solution in the search process, an intermediate disturbance strategy is implemented to quickly jump out of the local solution, thereby enhancing the global search capability. Finally, numerical experiments have been done and the results indicate that the proposed algorithm achieves a better performance in solving OCSLAP.


Sign in / Sign up

Export Citation Format

Share Document