Path Relinking with Multi-Start Tabu Search for the Quadratic Assignment Problem

2011 ◽  
Vol 2 (2) ◽  
pp. 52-70
Author(s):  
Tabitha James ◽  
Cesar Rego

This paper introduces a new path relinking algorithm for the well-known quadratic assignment problem (QAP) in combinatorial optimization. The QAP has attracted considerable attention in research because of its complexity and its applicability to many domains. The algorithm presented in this study employs path relinking as a solution combination method incorporating a multistart tabu search algorithm as an improvement method. The resulting algorithm has interesting similarities and contrasts with particle swarm optimization methods. Computational testing indicates that this algorithm produces results that rival the best QAP algorithms. The authors additionally conduct an analysis disclosing how different strategies prove more or less effective depending on the landscapes of the problems to which they are applied. This analysis lays a foundation for developing more effective future QAP algorithms, both for methods based on path relinking and tabu search, and for hybrids of such methods with related processes found in particle swarm optimization.

Author(s):  
Tabitha James ◽  
Cesar Rego

This paper introduces a new path relinking algorithm for the well-known quadratic assignment problem (QAP) in combinatorial optimization. The QAP has attracted considerable attention in research because of its complexity and its applicability to many domains. The algorithm presented in this study employs path relinking as a solution combination method incorporating a multistart tabu search algorithm as an improvement method. The resulting algorithm has interesting similarities and contrasts with particle swarm optimization methods. Computational testing indicates that this algorithm produces results that rival the best QAP algorithms. The authors additionally conduct an analysis disclosing how different strategies prove more or less effective depending on the landscapes of the problems to which they are applied. This analysis lays a foundation for developing more effective future QAP algorithms, both for methods based on path relinking and tabu search, and for hybrids of such methods with related processes found in particle swarm optimization.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3052 ◽  
Author(s):  
Ali Ahmadian ◽  
Ali Elkamel ◽  
Abdelkader Mazouz

Optimal expansion of medium-voltage power networks is a common issue in electrical distribution planning. Minimizing the total cost of the objective function with technical constraints make it a combinatorial problem which should be solved by powerful optimization algorithms. In this paper, a new improved hybrid Tabu search/particle swarm optimization algorithm is proposed to optimize the electric expansion planning. The proposed method is analyzed both mathematically and experimentally and it is applied to three different electric distribution networks as case studies. Numerical results and comparisons are presented and show the efficiency of the proposed algorithm. As a result, the proposed algorithm is more powerful than the other algorithms, especially in larger dimension networks.


2020 ◽  
Vol 90 ◽  
pp. 96-115
Author(s):  
Alfonsas Misevičius ◽  
Dovilė Kuznecovaitė (Verenė)

In this paper, a 2-level iterated tabu search (ITS) algorithm for the solution of the quadratic assignment problem (QAP) is considered. The novelty of the proposed ITS algorithm is that the solution mutation procedures are incorporated within the algorithm, which enable to diversify the search process and eliminate the search stagnation, thus increasing the algorithm’s efficiency. In the computational experiments, the algorithm is examined with various implemented variants of the mutation procedures using the QAP test (sample) instances from the library of the QAP instances – QAPLIB. The results of these experiments demonstrate how the different mutation procedures affect and possibly improve the overall performance of the ITS algorithm.


Sign in / Sign up

Export Citation Format

Share Document