Design of a controller for a steam generator of a power plant using robust control and genetic algorithm

Author(s):  
F. Le Mauff ◽  
G. Duc
Author(s):  
Roberto Carapellucci ◽  
Lorena Giordano

Improving performance of combined cycle power plants has been the target of numerous investigations. Most of the researchers have focused their attention on the heat recovery steam generator (HRSG), the connecting equipment between the gas turbine group and the steam section. On the other hand, almost all equipment in a combined cycle is a fairly standard design available from a manufacturer, while the HRSG is one of the few components that may be somewhat customized. In fact, the HRSG provides many different design options with respect to the layout of heat transfer sections and their operating parameters. The aim of this work is the development of a model for optimizing the main operating parameters of the heat recovery steam generator of a CCGT. The thermodynamic behaviour of the power plant has been simulated through the commercial software GateCycle, whereas the optimization has been carried out using a genetic algorithm. The objective function to be minimized is the cost of electricity, evaluated through a cash flow analysis in constant or in current dollars. Two CCGT power plant configurations, with one or three-pressure reheat HRSG, are simulated and optimized, evaluating the influence of fuel price variation on the optimal operating parameters of HRSG.


2002 ◽  
Vol 15 (3-4) ◽  
pp. 285-301 ◽  
Author(s):  
Alberto Herreros ◽  
Enrique Baeyens ◽  
José R. Perán

Author(s):  
Ravin G. Naik ◽  
Chirayu M. Shah ◽  
Arvind S. Mohite

To produce the power with higher overall efficiency and reasonable cost is ultimate aim for the power industries in the power deficient scenario. Though combined cycle power plant is most efficient way to produce the power in today’s world, rapidly increasing fuel prices motivates to define a strategy for cost-effective optimization of this system. The heat recovery steam generator is one of the equipment which is custom made for combined cycle power plant. So, here the particular interest is to optimize the combined power cycle performance through optimum design of heat recovery steam generator. The case of combined cycle power plant re-powered from the existing Rankine cycle based power plant is considered to be simulated and optimized. Various possible configuration and arrangements for heat recovery steam generator has been examined to produce the steam for steam turbine. Arrangement of heat exchangers of heat recovery steam generator is optimized for bottoming cycle’s power through what-if analysis. Steady state model has been developed using heat and mass balance equations for various subsystems to simulate the performance of combined power cycles. To evaluate the performance of combined power cycles and its subsystems in the view of second law of thermodynamics, exergy analysis has been performed and exergetic efficiency has been determined. Exergy concepts provide the deep insight into the losses through subsystems and actual performance. If the sole objective of optimization of heat recovery steam generator is to increase the exergetic efficiency or minimizing the exergy losses then it leads to the very high cost of power which is not acceptable. The exergo-economic analysis has been carried to find the cost flow from each subsystem involved to the combined power cycles. Thus the second law of thermodynamics combined with economics represents a very powerful tool for the systematic study and optimization of combined power cycles. Optimization studies have been carried out to evaluate the values of decision parameters of heat recovery steam generator for optimum exergetic efficiency and product cost. Genetic algorithm has been utilized for multi-objective optimization of this complex and nonlinear system. Pareto fronts generated by this study represent the set of best solutions and thus providing a support to the decision-making.


2002 ◽  
Vol 35 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R.H.C. Takahashi ◽  
D.C.W. Ramos ◽  
P.L.D. Peres

2005 ◽  
Vol 235 (23) ◽  
pp. 2477-2484 ◽  
Author(s):  
Seong Sik Hwang ◽  
Hong Pyo Kim ◽  
Joung Soo Kim ◽  
Kenneth E. Kasza ◽  
Jangyul Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document