Big Data Deep Learning Framework using Keras: A Case Study of Pneumonia Prediction

Author(s):  
Karan Jakhar ◽  
Nishtha Hooda
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dipendra Jha ◽  
Vishu Gupta ◽  
Logan Ward ◽  
Zijiang Yang ◽  
Christopher Wolverton ◽  
...  

AbstractThe application of machine learning (ML) techniques in materials science has attracted significant attention in recent years, due to their impressive ability to efficiently extract data-driven linkages from various input materials representations to their output properties. While the application of traditional ML techniques has become quite ubiquitous, there have been limited applications of more advanced deep learning (DL) techniques, primarily because big materials datasets are relatively rare. Given the demonstrated potential and advantages of DL and the increasing availability of big materials datasets, it is attractive to go for deeper neural networks in a bid to boost model performance, but in reality, it leads to performance degradation due to the vanishing gradient problem. In this paper, we address the question of how to enable deeper learning for cases where big materials data is available. Here, we present a general deep learning framework based on Individual Residual learning (IRNet) composed of very deep neural networks that can work with any vector-based materials representation as input to build accurate property prediction models. We find that the proposed IRNet models can not only successfully alleviate the vanishing gradient problem and enable deeper learning, but also lead to significantly (up to 47%) better model accuracy as compared to plain deep neural networks and traditional ML techniques for a given input materials representation in the presence of big data.


Author(s):  
Brayan Monroy ◽  
Jorge Bacca ◽  
Karen Sanchez ◽  
Henry Arguello ◽  
Sergio Castillo

2021 ◽  
Vol 2 (4) ◽  
pp. 448-461
Author(s):  
Teresa Alcamo ◽  
Alfredo Cuzzocrea ◽  
Giovanni Pilato ◽  
Daniele Schicchi

We analyze and compare five deep-learning neural architectures to manage the problem of irony and sarcasm detection for the Italian language. We briefly analyze the model architectures to choose the best compromise between performances and complexity. The obtained results show the effectiveness of such systems to handle the problem by achieving 93\% of F1-Score in the best case. As a case study, we also illustrate a possible embedding of the neural systems in a cloud computing infrastructure to exploit the computational advantage of using such an approach in tackling big data.


Author(s):  
Shungang Ning ◽  
Jianzhong Sun ◽  
Cui Liu ◽  
Yang Yi

Big data analytics with deep learning approach have attracted increasing attention in transportation engineering, involving operations, maintenance, and safety. In commercial aviation sectors, operational, and maintenance data produced on modern aircraft is increasing exponentially, and predictive analysis of these data is an exciting and promising field in aviation maintenance, which has a potential to revolutionize aerospace maintenance industry. This study illustrates the state-of-the-art applications of deep learning in big data analytics for predictive maintenance and a real-world case study for commercial aircraft. A Long Short-Term Memory network based Auto-Encoders (LSTM-AE) is proposed for complex aircraft system fault detection and classification, which makes use of the raw time-series data from heterogeneous sensors. The proposed method uses nominal time-series samples corresponding to healthy behavior of the system to learn a reconstruction model based on LSTM-AE framework. Then the system health index (HI) and fault feature vectors are derived from the reconstruction error matrix for fault detection and classification. The proposed method is demonstrated on a real-world data set from a commercial aircraft fleet. The typical PCV faults as well as the 390 F sensor and 450 F sensor faults due to sense line air leakage are successfully detected and distinguished based on the extracted features. The case study results show that the computed HI can effectively characterize the health state of the aircraft system and different fault types can be identified with high confidence, which is helpful for line fault troubleshooting.


Sign in / Sign up

Export Citation Format

Share Document