computational advantage
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Abhinav Deshpande ◽  
Arthur Mehta ◽  
Trevor Vincent ◽  
Nicolás Quesada ◽  
Marcel Hinsche ◽  
...  

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 598
Author(s):  
Priya Batra ◽  
Anukriti Singh ◽  
T. S. Mahesh

We demonstrate characterizing quantum evolutions via matrix factorization algorithm, a particular type of the recommender system (RS). A system undergoing a quantum evolution can be characterized in several ways. Here we choose (i) quantum correlations quantified by measures such as entropy, negativity, or discord, and (ii) state-fidelity. Using quantum registers with up to 10 qubits, we demonstrate that an RS can efficiently characterize both unitary and nonunitary evolutions. After carrying out a detailed performance analysis of the RS in two qubits, we show that it can be used to distinguish a clean database of quantum correlations from a noisy or a fake one. Moreover, we find that the RS brings about a significant computational advantage for building a large database of quantum discord, for which no simple closed-form expression exists. Also, RS can efficiently characterize systems undergoing nonunitary evolutions in terms of quantum discord reduction as well as state-fidelity. Finally, we utilize RS for the construction of discord phase space in a nonlinear quantum system.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2980
Author(s):  
Muhammad Kashif ◽  
Saif Al-Kuwari

The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to both speed up and improve the accuracy of neural networks. However, whether such quantum neural networks will result in a clear advantage on noisy intermediate-scale quantum (NISQ) devices is still not clear. In this paper, we propose a systematic methodology for designing quantum layer(s) in hybrid quantum–classical neural network (HQCNN) architectures. Following our proposed methodology, we develop different variants of hybrid neural networks and compare them with pure classical architectures of equivalent size. Finally, we empirically evaluate our proposed hybrid variants and show that the addition of quantum layers does provide a noticeable computational advantage.


Author(s):  
David Amaro ◽  
Carlo Modica ◽  
Matthias Rosenkranz ◽  
Mattia Fiorentini ◽  
Marcello Benedetti ◽  
...  

Abstract Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently. To make combinatorial optimization more efficient, we introduce the Filtering Variational Quantum Eigensolver (F-VQE) which utilizes filtering operators to achieve faster and more reliable convergence to the optimal solution. Additionally we explore the use of causal cones to reduce the number of qubits required on a quantum computer. Using random weighted MaxCut problems, we numerically analyze our methods and show that they perform better than the original VQE algorithm and the Quantum Approximate Optimization Algorithm (QAOA). We also demonstrate the experimental feasibility of our algorithms on a Honeywell trapped-ion quantum processor.


2021 ◽  
Vol 2 (4) ◽  
pp. 448-461
Author(s):  
Teresa Alcamo ◽  
Alfredo Cuzzocrea ◽  
Giovanni Pilato ◽  
Daniele Schicchi

We analyze and compare five deep-learning neural architectures to manage the problem of irony and sarcasm detection for the Italian language. We briefly analyze the model architectures to choose the best compromise between performances and complexity. The obtained results show the effectiveness of such systems to handle the problem by achieving 93\% of F1-Score in the best case. As a case study, we also illustrate a possible embedding of the neural systems in a cloud computing infrastructure to exploit the computational advantage of using such an approach in tackling big data.


2021 ◽  
Author(s):  
Qingling Zhu ◽  
Sirui Cao ◽  
Fusheng Chen ◽  
Ming-Cheng Chen ◽  
Xiawei Chen ◽  
...  

Author(s):  
Alois Pichler ◽  
Michael Weinhardt

AbstractThe nested distance builds on the Wasserstein distance to quantify the difference of stochastic processes, including also the evolution of information modelled by filtrations. The Sinkhorn divergence is a relaxation of the Wasserstein distance, which can be computed considerably faster. For this reason we employ the Sinkhorn divergence and take advantage of the related (fixed point) iteration algorithm. Furthermore, we investigate the transition of the entropy throughout the stages of the stochastic process and provide an entropy-regularized nested distance formulation, including a characterization of its dual. Numerical experiments affirm the computational advantage and supremacy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Federico Centrone ◽  
Niraj Kumar ◽  
Eleni Diamanti ◽  
Iordanis Kerenidis

AbstractIn recent years, many computational tasks have been proposed as candidates for showing a quantum computational advantage, that is an advantage in the time needed to perform the task using a quantum instead of a classical machine. Nevertheless, practical demonstrations of such an advantage remain particularly challenging because of the difficulty in bringing together all necessary theoretical and experimental ingredients. Here, we show an experimental demonstration of a quantum computational advantage in a prover-verifier interactive setting, where the computational task consists in the verification of an NP-complete problem by a verifier who only gets limited information about the proof sent by an untrusted prover in the form of a series of unentangled quantum states. We provide a simple linear optical implementation that can perform this verification task efficiently (within a few seconds), while we also provide strong evidence that, fixing the size of the proof, a classical computer would take much longer time (assuming only that it takes exponential time to solve an NP-complete problem). While our computational advantage concerns a specific task in a scenario of mostly theoretical interest, it brings us a step closer to potential useful applications, such as server-client quantum computing.


Sign in / Sign up

Export Citation Format

Share Document