Global state-feedback control for a class of high-order stochastic upper-triangular systems with input time-varying delay

Author(s):  
Liang Liu ◽  
Yifan Zhang
2016 ◽  
Vol 39 (12) ◽  
pp. 1898-1905 ◽  
Author(s):  
Liang Liu ◽  
Yifan Zhang

Based on the homogeneous domination approach and stochastic nonlinear time-delay system stability criterion, this paper investigates the global state-feedback stabilization problem for a class of stochastic high-order upper-triangular nonlinear systems with input time-varying delay. By skilfully choosing an appropriate Lyapunov–Krasoviskii functional and successfully solving several troublesome obstacles in the design and analysis procedure, a delay-independent state-feedback controller is designed to render the closed-loop system globally asymptotically stable in probability. The simulation example is given to verify the effectiveness of the proposed design scheme.


2015 ◽  
Vol 82 (1-2) ◽  
pp. 349-355 ◽  
Author(s):  
Omar Naifar ◽  
Abdellatif Ben Makhlouf ◽  
Mohamed Ali Hammami ◽  
Abderrazak Ouali

Author(s):  
Mengxiao Deng ◽  
Yali Dong

This paper studies the problem of finite-time stabilization of a class of switched linear time-varying delay systems. An event-triggered sampling mechanism and an event-triggered state feedback control are proposed. Based on Lyapunov-like function method, linear matrix inequality technique and averaged dwell time method, sufficient conditions for switched delay systems under event-triggered state feedback control are given to ensure the finite-time stabilization of the switched delay systems. Finally, a numerical example is given to verify the validity of the proposed results.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
C. Emharuethai ◽  
P. Niamsup

H∞control problem for nonlinear system with time-varying delay is considered by using a set of improved Lyapunov-Krasovskii functionals including some integral terms, and a matrix-based on quadratic convex, combined with Wirtinger's inequalities and some useful integral inequality.H∞controller is designed via memoryless state feedback control and new sufficient conditions for the existence of theH∞state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


Sign in / Sign up

Export Citation Format

Share Document