Distributed recovery block based fault-tolerant multicasting

Author(s):  
G.N. Khan ◽  
G.S. Hura ◽  
Gu Wei
2012 ◽  
Vol 268-270 ◽  
pp. 1790-1793
Author(s):  
Li Qing Li ◽  
Hai Lu ◽  
Xu Dong Li

Software Fault -tolerance is an effective and reliable design technique and Recovery Block Scheme is an important Software Fault-tolerant measure. Here is the brief introduction of the implementation of Software Fault-tolerant technique and the design pattern by employing software redundancy and then proposes the implementation of Recovery Block Scheme. Firstly, based on the program block’s fault captured by exception-progressing mechanism, it applies the Command Pattern and Active Objective Pattern to manage and schedule arithmetic unit to achieve rollback, clears the data generated by fault operation block and restores to the state before the operation. The design pattern provides a widely available recovery block schemes design pattern, simplifies the implementation of arithmetic unit and gives the core algorithm through Java.


Author(s):  
P. C. JHA ◽  
RAMANDEEP KAUR ◽  
SHIVANI BALI ◽  
SUSHILA MADAN

Application Package Software (APS) has emerged as a ready-to-use solution for the software industry. The software system comprises of a number of components which can be either purchased from the vendor in the form of COTS (Commercial Off-the-Shelf) or can be built in-house. Such a decision is known as Build-or-Buy decision. Under the situations wherein the software has the responsibility of supervising life-critical systems, the inception of errors in software due to inadequate or incomplete testing, is not acceptable. Such life-critical systems enforces upon meeting the quality standards of the software as unforbiddenable. This can be achieved by incorporating a fault-tolerant design that enables a system to continue its intended operation rather than failing completely when some part of the system fails. Moreover, while designing a fault-tolerant system, it must be apprehended that 100% fault tolerance can never be achieved and the closer we try to get to 100%, the more costly the system will be. The proposed model shall incorporate consensus recovery block scheme of fault tolerant techniques. Through this paper, we shall focus on build-or-buy decision for an APS in order to facilitate optimal component selection thereby, maximizing the reliability and minimizing the overall cost and source lines of code of the entire system. Further, since the proposed problem has incompleteness and unreliability of input information such as execution time and cost, hence, the environment in the proposed model is taken as fuzzy.


Author(s):  
Mykola Chernyak ◽  
Vadym Kolesnyk

Redundant inertial measurement units (IMU) are used in security-critical operations since the advent of inertial technology. This approach allows you to create fault-tolerant systems that can detect and isolate defective sensors. Besides, experimental results have shown that redundant IMU is also an effective way to improve the performance of navigation systems. The question is only in the dependence of the accuracy of the unit on the number of sensors used and their mutual orientation. This paper analyses the influence of spatial orientation on the accuracy of an IMU with a redundant configuration in the case of using triaxial orthogonal micromechanical measuring modules as atomic structural units. The first part of this article concentrates on the geometry of the redundant IMU. Analysis of its metrological model of a redundant showed that, when dealing with orthogonal IMU triads, its resulting accuracy is independent of the relative orientation between them. This fact presents important practical implications since it demonstrates that using complex large-scale installation structures can be avoided. As a result, it is enough to place instead of an array of units, for example, only on one printed circuit board with any orientation. Also, it was found the relationship between the number of sensors employed and the accuracy improvement that enables us to ascertain the exact number of sensors needed to design a navigation system with a certain precision. The second part of this article shows the experimental approval of theoretical conclusions during the testing of a prototype block based on three low-cost units (MPU6050) built according to a symmetric tetrahedron scheme. The accuracy of the redundant block was experimentally evaluated based on the value of the errors in determining the modulus of gravity acceleration and a given angular velocity of a test rotary platform in a series of positions. The performance of the tested inertial measuring block was better on average in comparison with anyone module from this block that proved the possibility of using these approaches for MEMS sensors in high-accuracy application areas.


Sign in / Sign up

Export Citation Format

Share Document