A new method for solving a linear programming problem

Author(s):  
Yoshihiro Yamamoto
2018 ◽  
Vol 10 (5) ◽  
pp. 60
Author(s):  
Muhammad Hanif ◽  
Farzana Sultana Rafi

The several standard and the existing proposed methods for optimality of transportation problems in linear programming problem are available. In this paper, we considered all standard and existing proposed methods and then we proposed a new method for optimal solution of transportation problems. The most attractive feature of this method is that it requires very simple arithmetical and logical calculation, that’s why it is very easy even for layman to understand and use. Some limitations and recommendations of future works are also mentioned of the proposed method. Several numerical examples have been illustrated, those gives the clear idea about the method. A programming code for this method has been written in Appendix of the paper.


2021 ◽  
Vol 11 (1) ◽  
pp. 880-886
Author(s):  
Hamiden Abd El-Wahed Khalifa ◽  
Majed Alharbi ◽  
Pavan Kumar

Abstract In the current study, a neutrosophic quadratic fractional programming (NQFP) problem is investigated using a new method. The NQFP problem is converted into the corresponding quadratic fractional programming (QFP) problem. The QFP is formulated by using the score function and hence it is converted to the linear programming problem (LPP) using the Taylor series, which can be solved by LPP techniques or software (e.g., Lingo). Finally, an example is given for illustration.


2017 ◽  
Vol 27 (3) ◽  
pp. 563-573 ◽  
Author(s):  
Rajendran Vidhya ◽  
Rajkumar Irene Hepzibah

AbstractIn a real world situation, whenever ambiguity exists in the modeling of intuitionistic fuzzy numbers (IFNs), interval valued intuitionistic fuzzy numbers (IVIFNs) are often used in order to represent a range of IFNs unstable from the most pessimistic evaluation to the most optimistic one. IVIFNs are a construction which helps us to avoid such a prohibitive complexity. This paper is focused on two types of arithmetic operations on interval valued intuitionistic fuzzy numbers (IVIFNs) to solve the interval valued intuitionistic fuzzy multi-objective linear programming problem with pentagonal intuitionistic fuzzy numbers (PIFNs) by assuming differentαandβcut values in a comparative manner. The objective functions involved in the problem are ranked by the ratio ranking method and the problem is solved by the preemptive optimization method. An illustrative example with MATLAB outputs is presented in order to clarify the potential approach.


Sign in / Sign up

Export Citation Format

Share Document