Open Engineering
Latest Publications


TOTAL DOCUMENTS

789
(FIVE YEARS 291)

H-INDEX

15
(FIVE YEARS 4)

Published By Walter De Gruyter Gmbh

2391-5439

2021 ◽  
Vol 11 (1) ◽  
pp. 1093-1104
Author(s):  
Enock Michael ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Aditya Rio Prabowo

Abstract This study aimed to compare the graphical method (GM) and standard deviation method (SDM), based on analyses and efficient Weibull parameters by estimating future wind energy potential in the coastline region of Dar es Salaam, Tanzania. Hence, the conclusion from the numerical method comparisons will also determine suitable wind turbines that are cost-effective for the study location. The wind speed data for this study were collected by the Tanzania Meteorological Authority Dar es Salaam station over the period of 2017 to 2019. The two numerical methods introduced in this study were both found to be appropriate for Weibull distribution parameter estimation in the study area. However, the SDM gave a higher value of the Weibull parameter estimation than the GM. Furthermore, the five selected commercial wind turbine models that were simulated in terms of performance were based on a capacity factor using the SDM and were both over 25% the recommended capacity factor value. The Polaris P50-500 commercial wind turbine is recommend as a suitable wind turbine to be installed in the study area due to its maximum annual capacity factor value over 3 years.


2021 ◽  
Vol 11 (1) ◽  
pp. 1122-1129
Author(s):  
Aleksandra Radziejowska ◽  
Joanna Sagan ◽  
Anna Sobotka

Abstract Protection of buildings against the pernicious radiation types can be achieved by simultaneous structural and shielding parameters. Those shields are mainly made of heavyweight concrete, which causes many serious problems in the areas of technology, supply logistics, financial supply, Occupational Safety & Health Administration, and substitutions of structural and material solutions. This work presents a case study of the construction of the university building with rooms requiring protection against malicious radiations. Apart from that, it presents the problems and solutions that occurred during the construction from the perspective of the works contractor. This study was also expanded to include the analysis of alternatives for construction-materials. The obtained results were used to develop a generalized scheme, which will be helpful in the preparation and implementation of any facilities requiring fixed radiation shields.


2021 ◽  
Vol 11 (1) ◽  
pp. 339-348
Author(s):  
Piotr Bojarczak ◽  
Piotr Lesiak

Abstract The article uses images from Unmanned Aerial Vehicles (UAVs) for rail diagnostics. The main advantage of such a solution compared to traditional surveys performed with measuring vehicles is the elimination of decreased train traffic. The authors, in the study, limited themselves to the diagnosis of hazardous split defects in rails. An algorithm has been proposed to detect them with an efficiency rate of about 81% for defects not less than 6.9% of the rail head width. It uses the FCN-8 deep-learning network, implemented in the Tensorflow environment, to extract the rail head by image segmentation. Using this type of network for segmentation increases the resistance of the algorithm to changes in the recorded rail image brightness. This is of fundamental importance in the case of variable conditions for image recording by UAVs. The detection of these defects in the rail head is performed using an algorithm in the Python language and the OpenCV library. To locate the defect, it uses the contour of a separate rail head together with a rectangle circumscribed around it. The use of UAVs together with artificial intelligence to detect split defects is an important element of novelty presented in this work.


2021 ◽  
Vol 11 (1) ◽  
pp. 329-338 ◽  
Author(s):  
E. Surojo ◽  
J. Anindito ◽  
F. Paundra ◽  
A. R. Prabowo ◽  
E. P. Budiana ◽  
...  

Abstract Underwater wet welding (UWW) is widely used in repair of offshore constructions and underwater pipelines by the shielded metal arc welding (SMAW) method. They are subjected the dynamic load due to sea water flow. In this condition, they can experience the fatigue failure. This study was aimed to determine the effect of water flow speed (0 m/s, 1 m/s, and 2 m/s) and water depth (2.5 m and 5 m) on the crack growth rate of underwater wet welded low carbon steel SS400. Underwater wet welding processes were conducted using E6013 electrode (RB26) with a diameter of 4 mm, type of negative electrode polarity and constant electric current and welding speed of 90 A and 1.5 mm/s respectively. In air welding process was also conducted for comparison. Compared to in air welded joint, underwater wet welded joints have more weld defects including porosity, incomplete penetration and irregular surface. Fatigue crack growth rate of underwater wet welded joints will decrease as water depth increases and water flow rate decreases. It is represented by Paris's constant, where specimens in air welding, 2.5 m and 5 m water depth have average Paris's constant of 8.16, 7.54 and 5.56 respectively. The increasing water depth will cause the formation of Acicular Ferrite structure which has high fatigue crack resistance. The higher the water flow rate, the higher the welding defects, thereby reducing the fatigue crack resistance.


2021 ◽  
Vol 11 (1) ◽  
pp. 592-605
Author(s):  
Melchior Bria ◽  
Ludfi Djakfar ◽  
Achmad Wicaksono

Abstract The impacts of work characteristics on travel mode choice behavior has been studied for a long time, focusing on the work type, income, duration, and working time. However, there are no comprehensive studies on the influence of travel behavior. Therefore, this study examines the influence of work environment as a mediator of socio-economic variables, trip characteristics, transportation infrastructure and services, the environment and choice of transportation mode on work trips. The mode of transportation consists of three variables, including public transportation (bus rapid transit and mass rapid transit), private vehicles (cars and motorbikes), and online transportation (online taxis and motorbike taxis online). Multivariate analysis using the partial least squares-structural equation modeling method was used to explain the relationship between variables in the model. According to the results, the mediating impact of work environment is significant on transportation choices only for environmental variables. The mediating mode choice effect is negative for public transportation and complimentary for private vehicles and online transportation. Other variables directly affect mode choice, including the influence of work environment.


2021 ◽  
Vol 11 (1) ◽  
pp. 617-623
Author(s):  
Adam Sowiński ◽  
Tomasz Szczepański ◽  
Grzegorz Koralewski

Abstract This article presents the results of measurements of the braking efficiency of vehicles adapted to be operated by drivers with motor dysfunctions. In such cars, the braking system is extended with an adaptive device that allows braking with the upper limb. This device applies pressure to the original brake in the car. The braking force and thus its efficiency depend on the mechanical ratio in the adapting device. In addition, braking performance depends on the sensitivity of the car’s original braking system and the maximum force that a disabled person can exert on the handbrake lever. Such a person may have limited power in the upper limbs. The force exerted by the driver can also be influenced by the position of the driver’s seat in relation to the handbrake lever. This article describes the research aimed at understanding the influence of the above-mentioned factors on the car braking performance. As a part of the analysis of the test results, a mathematical function was proposed that allows a parametric description of the braking efficiency index on the basis of data on the braking system, adaptation device, driver’s motor limitations, and the position of the driver’s seat. The information presented in this article can be used for the preliminary selection of adaptive devices to the needs of a given driver with a disability and to the vehicle construction.


2021 ◽  
Vol 11 (1) ◽  
pp. 470-482
Author(s):  
Damian Frej ◽  
Andrzej Zuska ◽  
Emilia M. Szumska

Abstract The article presents the results of laboratory tests on the influence of the choice of the vehicle suspension position and the method of mounting child seats on the vibration comfort of children transported in them. Two child seats were used in the work. The B seat was attached to the vehicle with the ISOfix system, while the A seat was attached in the classic way (with seat belts). During the tests, the values of vertical vibrations were recorded on the seats of child seats, the rear seat of the vehicle and on the basis of ISOfix. The analyzed systems, depending on the method of mounting a child seat, may be characterized by two different vibration transmission chains. They depend on the method of fixing the child seat (the classic way of fixing the seat and the ISOFIX system). The article presents the results of empirical tests carried out at the EUSAMA SA.640 stand, which in these tests acted as a vibration generator with a frequency of 0 to 25 Hz. The analysis of the obtained results confirmed the observations published in previous articles about the negative impact of the use of the ISOfix base on the vibrational comfort of children.


2021 ◽  
Vol 11 (1) ◽  
pp. 294-302
Author(s):  
Gal Davidi

Abstract In this work an analysis of the radial stress and velocity fields is performed according to the J 2 flow theory for a rigid/perfectly plastic material. The flow field is used to simulate the forming processes of sheets. The significant achievement of this paper is the generalization of the work by Nadai & Hill for homogenous material in the sense of its yield stress, to a material with general transverse non-homogeneity. In Addition, a special un-coupled form of the system of equations is obtained where the task of solving it reduces to the solution of a single non-linear algebraic differential equation for the shear stress. A semi-analytical solution is attained solving numerically this equation and the rest of the stresses term together with the velocity field is calculated analytically. As a case study a tri-layered symmetrical sheet is chosen for two configurations: soft inner core and hard coating, hard inner core and soft coating. The main practical outcome of this work is the derivation of the validity limit for radial solution by mapping the “state space” that encompasses all possible configurations of the forming process. This configuration mapping defines the “safe” range of configurations parameters in which flawless processes can be achieved. Several aspects are researched: the ratio of material's properties of two adjacent layers, the location of layers interface and friction coefficient with the walls of the dies.


2021 ◽  
Vol 11 (1) ◽  
pp. 845-852
Author(s):  
Aleksandra Rodak ◽  
Paweł Budziszewski ◽  
Małgorzata Pędzierska ◽  
Mikołaj Kruszewski

Abstract In L3–L4 vehicles, driving task is performed primarily by automated driving system (ADS). Automation mode permits to engage in non-driving-related tasks; however, it necessitates continuous vigilance and attention. Although the driver may be distracted, a request to intervene may suddenly occur, requiring immediate and appropriate response to driving conditions. To increase safety, automated vehicles should be equipped with a Driver Intervention Performance Assessment module (DIPA), ensuring that the driver is able to take the control of the vehicle and maintain it safely. Otherwise, ADS should regain control from the driver and perform a minimal risk manoeuvre. The paper explains the essence of DIPA, indicates possible measures, and describes a concept of DIPA framework being developed in the project.


2021 ◽  
Vol 11 (1) ◽  
pp. 365-376
Author(s):  
Andrzej Bąkowski ◽  
Leszek Radziszewski

Abstract The study analyzed the parameters of vehicle traffic and noise on the national road in the section in the city from 2011 to 2016. In 2013–2014 this road was reconstructed. It was found that in most cases, the distribution of the tested variable was not normal. The median and selected percentiles of vehicle traffic parameters and noise were examined. The variability and type A uncertainty of the results were described and evaluated. The results obtained for the data recorded on working and non-working days were compared. The vehicle cumulative speed distributions, for two-way four-lane road segments in both directions were analyzed. A mathematical model of normalized traffic flow has been proposed. Fit factor R2 of the proposed equations to the experimental data for passenger vehicles ranges from 0.93 to 0.99. It has been shown that two years after the road reconstruction, the median noise level did not increase even though traffic volumes and vehicle speeds increased. The Cnossos noise model was validated for data recorded over a period of 6 years. A very good agreement of the medians determined according to the Cnossos-EU model and the measured ones was obtained. It should be noted, however, that for the other analyzed percentiles, e.g. 95%, the discrepancies are larger.


Sign in / Sign up

Export Citation Format

Share Document