Resolution of the left ventricle 3D reconstruction problem using approaches based on genetic algorithm for multiobjective problems

Author(s):  
J. Aguilar ◽  
P. Miranda
1999 ◽  
Vol 77 (11) ◽  
pp. 1843-1855 ◽  
Author(s):  
Pamela S Bromberg ◽  
Kathleen M Gough ◽  
Ian MC Dixon

Collagen type I and III deposition in the cardiac extracellular matrix contributes significantly to myocardial dysfunction. Diffuse and focal fibrosis is believed to accompany human congestive cardiomyopathy (CCM) associated with congestive heart failure (CHF). The left ventricle collagen remodeling that occurs in the hamster model of CCM is marked by left ventricle fibrosis, hypertrophy and dilation, proceeded by CHF post 150 days of age. The objectives of our study were to (i) evaluate changes in collagen deposition in the right (RV) and left (LV) ventricular tissue of cardiomyopathic (CMP) and control (CON) myocardium using FTIR ATR spectroscopy, (ii) classify the normal and diseased heart tissue using linear discriminant analysis (LDA) aided by a genetic algorithm (GA) selection of spectroscopically diagnostic regions in the mid-IR region, (iii) rationalize the spectroscopic differences between left/right ventricle tissue as well as CON/CMP tissue according to the pathophysiology documented for the UM-X7.1 strain of CMP hamsters. The presence of collagen in the tissue was confirmed spectroscopically by observation of the collagen IR fingerprint in the 1000-1800 cm-1 region. Difference spectroscopy was utilized to substantiate which tissue under comparison exhibited pronounced collagen content. Multivariate analysis (LDA) was carried out on user-selected spectral subregions and compared to class separation based on spectral subregions chosen nonsubjectively by a GA. Our study confirmed that the animals experienced LV collagen remodeling denoted by focal rather than diffuse fibrosis. In addition, RV collagen remodeling, denoted by decreased RV collagen content, appeared to accompany the increased LV collagen deposition found for the CMP animals.Key words: FTIR spectroscopy, collagen, cardiomyopathy, genetic algorithm, linear discriminant analysis.


2009 ◽  
Vol 193 (1) ◽  
pp. 195-203 ◽  
Author(s):  
Gerald Whittaker ◽  
Remegio Confesor ◽  
Stephen M. Griffith ◽  
Rolf Färe ◽  
Shawna Grosskopf ◽  
...  

2006 ◽  
Vol 24 (5) ◽  
pp. 436-446 ◽  
Author(s):  
A. Mishra ◽  
P.K. Dutta ◽  
M.K. Ghosh

Author(s):  
Daniela Faas ◽  
Christine Buffinton ◽  
David Sedmera

Changes in mechanical loading in the developing heart produce changes in morphology and mechanical material properties [1–3]. Understanding the relationship of these changes to mechanical stress and strain in the left ventricle requires a geometrically accurate model of the entire ventricle including the trabecular pattern and material property, boundary condition, and loading specification. A 3D reconstruction and finite element technique were developed to reconstruct the heart from serial confocal sections and calculate stress and strain distributions over the volume for the passive state. Control hearts and two treatments, pressure overload and pressure underload, were modeled. The results show that stresses in the trabeculae are much larger than those in the ventricular walls. Strains in the pressure-overloaded hearts were significantly smaller than in control or underloaded, indicating the stiffer material properties more than compensate for the increased internal pressure.


Sign in / Sign up

Export Citation Format

Share Document